Publications by authors named "Benny Ryplida"

The research aims to identify the chemical constituents of endophytic fungi associated with and their biological activities. Two endophytic fungi, labelled as GS-1 and GS-2, have been isolated from the leaves of . They were cultivated on white rice media for their optimum cultivation time.

View Article and Find Full Text PDF

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.

View Article and Find Full Text PDF

The reversible volume memories of the inner structures of soft materials with controllable hydrophilic-hydrophobic balance have been widely recognized, for example, hydrogels used in pressure sensors. Mechanical stimuli, such as pressure, vibration, and tensile, may influence the deformation of the hydrogel while simultaneously changing the electronic signal. Here, we designed a hydrophobic carbon dot nanoparticle (-CD) mixed with polyvinyl alcohol and catechol-conjugated chitosan to obtain a hydrogel suitable for pressure and vibration sensor applications.

View Article and Find Full Text PDF

Recently, a great deal of research has focused on the study of self-healing hydrogels possessing electronic conductivity due to their wide applicability for use in biosensors, bioelectronics, and energy storage. The low solubility, poor biocompatibility, and lack of effective stimuli-responsive properties of their sp carbon-rich hybrid organic polymers, however, have proven challenging for their use in electroconductive self-healing hydrogel fabrication. In this study, we developed stimuli-responsive electrochemical wireless hydrogel biosensors using ureidopyriminone-conjugated gelatin (Gel-UPy) hydrogels that incorporate diselenide-containing carbon dots (dsCD) for cancer detection.

View Article and Find Full Text PDF

Herein, we describe the fabrication and characterization of carbonized disulfide core-crosslinked polymer dots with pH-cleavable colorimetric nanosensors, based on diol dye-conjugated fluorescent polymer dots (L-PD), for reduction-triggered paclitaxel (PTX) release during fluorescence imaging-guided chemotherapy of tumors. L-PD were loaded with PTX (PTX loaded L-PD), via π-π stackings or hydrophobic interactions, for selective theragnosis by enhanced release of PTX after the cleavage of disulfide bonds by high concentration of glutathione (GSH) in a tumor. The nano-hybrid system showed fluorescence quenching behavior with less than 2% of PTX released under physiological conditions.

View Article and Find Full Text PDF

A redox-responsive fluorescent carbon nanogel (FCN) was designed as a bioimaging probe for targeted drug delivery to cancer cells. FCN was synthesized by the carbonization of disulfide cross-linked hyaluronic acid in the fluorescence "on" mode, followed by the attachment of manganese oxide (MnO) nanosheets for fluorescence quenching (fluorescence "off"). We hypothesized that the fluorescence intensity of paclitaxel (PTX)-MnO/FCN would suddenly increase (fluorescence "on") in the presence of a high level of glutathione (GSH) in cancer cells, owing to the reduction of MnO to Mn and cleavage of the disulfide bond.

View Article and Find Full Text PDF

Using pH-switchable fluorescent polymer dots (PD) by means of fluorescent, colorimetric, and electrochemical signals generated from surfaces coated with PD of zwitterionic structure provided a fast and easy method to assess their performance in mammalian cell and bacterial interactions. The PD-coated surfaces showed high sensitivity over a broad range of pH levels by switching reversibly zwitterionic states, which led to an excellent cellular resistance effect by inhibiting the attachment of nearly 95% of mammalian cells. Similarly, they exhibited a strong interaction with the negatively charged surfaces of bacteria, as observed in the fluorescence ON/OFF system.

View Article and Find Full Text PDF

Here, we designed a pH-responsive Indocyanine Green (ICG)-loaded zwitterion fluorescent carbon dot (CD)-encapsulating mesoporous silica nanoparticle (MSN) for pH-tunable image-guided photothermal therapy. ICG was loaded into MSN(CD) via hydrophobic and electrostatic interactions between zwitterionic CDs and ICG to achieve a controlled photothermal temperature with a fluorescent "off/on" system. The porosity of the MSNs was altered after ICG loading because of intermolecular interactions between the CDs and ICG inside the MSN shell and core, which blocked the MSN pore.

View Article and Find Full Text PDF

Redox-responsive polymer dot (PD) were synthesized from disulfide cross-linked polymers in a carbonized process to allow quenching effects by loading of boron-dipyrromethene (BODIPY) onto the matrix. The disulfide linkage facilitated degradation of the PD system by intracellular glutathione (GSH), leading to fluorescence recovery by BODIPY and intracellular drug release. The paclitaxel release profile showed that approximately 100% of the drug escaped from the matrix in response to 10 mM GSH, whereas less than 10% was released in the absence of GSH.

View Article and Find Full Text PDF