Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li) separation from industrial brines. However, very few MOF membranes can efficiently separate Li from brines of high Mg/Li concentration ratios and keep stable in ultrahigh Mg-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH) into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li extraction.
View Article and Find Full Text PDFWith over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.
View Article and Find Full Text PDFThe influence of the water content on ion and water transport mechanisms in polymer membranes under low to moderate hydration conditions remains poorly understood. In this study, we combine ion and water diffusivity (PFG-NMR) measurements with atomistic molecular dynamics simulations to better understand transport processes in hydrated salt-doped poly(ethylene glycol). Above the water percolation threshold, the experimental and simulated diffusivities are in good agreement with the free volume transport models.
View Article and Find Full Text PDFMinimal understanding of the formation mechanism and structure of polydopamine (pDA) and its natural analogue, eumelanin, impedes the practical application of these versatile polymers and limits our knowledge of the origin of melanoma. The lack of conclusive structural evidence stems from the insolubility of these materials, which has spawned significantly diverse suggestions of pDA's structure in the literature. We discovered that pDA is soluble in certain ionic liquids.
View Article and Find Full Text PDFIon exchange membranes (IEMs) are frequently used in water treatment and electrochemical applications, with their ion separation properties largely governed by equilibrium ion partitioning between a membrane and contiguous solution. Despite an expansive literature on IEMs, the influence of electrolyte association (i.e.
View Article and Find Full Text PDFControllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.
View Article and Find Full Text PDFAccess to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate.
View Article and Find Full Text PDFMembrane fouling remains a key challenge for membrane separations. Hydrophilic membrane surface modification can mitigate irreversible foulant deposition, thereby improving fouling resistance. We report new hydrophilic membrane coatings based on 1,4-benzoquinone and various commercially available polyetheramines.
View Article and Find Full Text PDFThe influence of dynamical ion-ion correlations and ion pairing on salt transport in ion exchange membranes remain poorly understood. In this study, we use the framework of Onsager transport coefficients within atomistic molecular dynamics simulations to study the impact of ion-ion correlated motion on salt transport in hydrated polystyrene sulfonate membranes and compare with the results from aqueous salt solutions. At sufficiently high salt concentrations, cation-anion dynamical correlations exert a significant influence on both salt diffusivities and conductivities.
View Article and Find Full Text PDFAn organized combination of stiff and elastic domains within a single material can synergistically tailor bulk mechanical properties. However, synthetic methods to achieve such sophisticated architectures remain elusive. We report a rapid, facile, and environmentally benign method to pattern strong and stiff semicrystalline phases within soft and elastic matrices using stereo-controlled ring-opening metathesis polymerization of an industrial monomer, -cyclooctene.
View Article and Find Full Text PDFSelective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical potential at the solution/membrane interface. The Donnan potential results in the partial exclusion of co-ion, providing the basis of permselectivity.
View Article and Find Full Text PDFA set of thermally rearranged mixed matrix membranes (TR-MMMs) was manufactured and tested for gas separation. These membranes were obtained through the thermal treatment of a precursor MMM with a microporous polymer network and an o-hydroxypolyamide,(HPA) created through a reaction of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (APAF) and 5'-terbutil--terfenilo-3,3″-dicarboxylic acid dichloride (tBTmCl). This HPA was blended with different percentages of a porous polymer network (PPN) filler, which produced gas separation MMMs with enhanced gas permeability but with decreased selectivity.
View Article and Find Full Text PDFDirect lithium extraction via membrane separations has been fundamentally limited by lack of monovalent ion selectivity exhibited by conventional polymeric membranes, particularly between sodium and lithium ions. Recently, a 12-Crown-4-functionalized polynorbornene membrane was shown to have the largest lithium/sodium permeability selectivity observed in a fully aqueous system to date. Using atomistic molecular dynamics simulations, we reveal that this selectivity is due to strong interactions between sodium ions and 12-Crown-4 moieties, which reduce sodium ion diffusivity while leaving lithium ion mobility relatively unaffected.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
Separation of olefins from their paraffin analogs relies on energy-intensive cryogenic distillation. Facilitated transport-based membranes that reversibly and selectively bind olefins, but not paraffins, could save considerable amounts of energy. However, the chemical instability of the silver ion olefin-binding carriers in such membranes has been a longstanding roadblock for this approach.
View Article and Find Full Text PDFMixed-matrix membranes (MMMs) consisting of an -hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H, N, O, CH and CO gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume.
View Article and Find Full Text PDFMixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most probable size of the PPN particles was 75 nm with quite large distributions.
View Article and Find Full Text PDFReported herein are two functionalized crown ether strapped calix[4]pyrroles, and . As inferred from competitive salt binding experiments carried out in nitrobenzene- and acetonitrile-, these hosts capture LiCl selectively over four other test salts, . NaCl, KCl, MgCl, and CaCl.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Lithium is widely used in contemporary energy applications, but its isolation from natural reserves is plagued by time-consuming and costly processes. While polymer membranes could, in principle, circumvent these challenges by efficiently extracting lithium from aqueous solutions, they usually exhibit poor ion-specific selectivity. Toward this end, we have incorporated host-guest interactions into a tunable polynorbornene network by copolymerizing 1) 12-crown-4 ligands to impart ion selectivity, 2) poly(ethylene oxide) side chains to control water content, and 3) a crosslinker to form robust solids at room temperature.
View Article and Find Full Text PDFA hydroxypolyamide (HPA) manufactured from 2,2-bis(3-amino-4-hydroxy phenyl)-hexafluoropropane (APAF) diamine and 5'-terbutyl--terphenyl-4,4''-dicarboxylic acid chloride (tBTpCl), and a copolyimide produced by stochiometric copolymerization of APAF and 4,4'-(hexafluoroisopropylidene) diamine (6FpDA), using the same diacid chloride, were obtained and used as polymeric matrixes in mixed matrix membranes (MMMs) loaded with 20% (/) of two porous polymer networks (triptycene-isatin, PPN-1, and triptycene-trifluoroacetophenone, PPN-2). These MMMs, and also the thermally rearranged membranes (TR-MMMs) that underwent a thermal treatment process to convert the o-hydroxypolyamide moieties to polybenzoxazole ones, were characterized, and their gas separation properties evaluated for H, N, O, CH, and CO. Both TR process and the addition of PPN increased permeability with minor decreases in selectivity for all gases tested.
View Article and Find Full Text PDFWe present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å.
View Article and Find Full Text PDFTreatment of nontraditional source waters (e.g., produced water, municipal and industrial wastewaters, agricultural runoff) offers exciting opportunities to expand water and energy resources via water reuse and resource recovery.
View Article and Find Full Text PDFMembranes are crucial to lowering the huge energy costs of chemical separations. Whilst some promising polymers demonstrate excellent transport properties, problems of plasticisation and physical aging due to mobile polymer chains, amongst others, prevent their exploitation in membranes for industrial separations. Here we reveal that molecular interactions between a polymer of intrinsic microporosity (PIM) matrix and a porous aromatic framework additive (PAF-1) can simultaneously address plasticisation and physical aging whilst also increasing gas transport selectivity.
View Article and Find Full Text PDFNanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments.
View Article and Find Full Text PDF