Proc Natl Acad Sci U S A
August 2016
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination.
View Article and Find Full Text PDFHere we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample.
View Article and Find Full Text PDFWe have recently proposed sedimented solute NMR (SedNMR) as a solid-state method to access biomolecules without the need of crystallization or other sample manipulation. The drawback of SedNMR is that samples are intrinsically diluted and this is detrimental for the signal intensity. Ultracentrifugal devices can be used to increase the amount of sample inside the rotor, overcoming the intrinsic sensitivity limitation of the method.
View Article and Find Full Text PDFThe 2D satellite transition magic angle spinning (STMAS) experiment generates efficiently high-resolution isotropic NMR spectra of half-integer quadrupolar nuclei. The experiment involves excitation and coherence transfer of satellite transitions into the central transition. It requires efficient refocusing of satellite transitions and sample spinning at a very accurate magic angle to cancel the first-order quadrupolar interaction effect.
View Article and Find Full Text PDF