Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBrown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder and one of the leading causes of death in the United States. Although amyloid plaques and fibrillary tangles are hallmarks of AD, research suggests that pathology associated with AD often begins 20 or more years before symptoms appear. Therefore, it is essential to identify early-stage biomarkers in those at risk for AD and age-related cognitive decline (ARCD) in order to develop preventative treatments.
View Article and Find Full Text PDFThe loss of skeletal muscle mass and function with age (sarcopenia) is a critical healthcare challenge for older adults. 31-phosphorus magnetic resonance spectroscopy ( P-MRS) is a powerful tool used to evaluate phosphorus metabolite levels in muscle. Here, we sought to determine which phosphorus metabolites were linked with reduced muscle mass and function in older adults.
View Article and Find Full Text PDF(1) Background: Interest in the application of metabolomics toward clinical diagnostics development and population health monitoring has grown significantly in recent years. In spite of several advances in analytical and computational tools, obtaining a sufficient number of samples from patients remains an obstacle. The dried blood spot (DBS) and dried urine strip (DUS) methodologies are a minimally invasive sample collection method allowing for the relative simplicity of sample collection and minimal cost.
View Article and Find Full Text PDFReduction of Zr/Co heterobimetallic complexes ICo(MesNP(i)Pr(2))(3)ZrCl (1) and ICo((i)PrNP(i)Pr(2))(3)ZrCl (2) with excess Na/Hg under N(2), followed by subsequent benzene extraction to remove coordinated Na halide salts, leads to neutral two-electron reduced, dinitrogen-bound complexes (THF)Zr(MesNP(i)Pr(2))(3)Co-N(2) (4) and Zr((i)PrNP(i)Pr(2))(3)Co-N(2) (5). Upon halide loss, a THF solvent molecule coordinates to the axial site of the Zr center in 4, while this axial site remains unoccupied in 5. X-ray crystallography reveals short Co-Zr distances in 4 and 5, indicative of metal-metal multiple bonding, and an unprecedented trigonal monopyramidal geometry about the Zr center in 5.
View Article and Find Full Text PDFTo assess the effect of dative M-->M interactions on redox properties in early/late heterobimetallic complexes, a series of Co/Zr complexes supported by phosphinoamide ligands have been synthesized and characterized. Treatment of the Zr metalloligands (Ph(2)PN(i)Pr)(3)ZrCl (1), ((i)Pr(2)PNMes)(3)ZrCl (2), and ((i)Pr(2)PN(i)Pr)(3)ZrCl (3) with CoI(2) leads to reduction from Co(II) to Co(I) and isolation of the heterobimetallic complexes ICo(Ph(2)PN(i)Pr)(3)ZrCl (4), ICo((i)Pr(2)PNMes)(3)ZrCl (5), and ICo((i)Pr(2)PN(i)Pr)(3)ZrCl (6), respectively. Interestingly, treatment of CoI(2) with the phosphinoamine Ph(2)PNH(i)Pr in the absence of a bound Zr center leads to the disubstituted Co(II) complex (Ph(2)PNH(i)Pr)(2)CoI(2) (7).
View Article and Find Full Text PDF