Publications by authors named "Benne N"

The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.

View Article and Find Full Text PDF

The discovery that the bacterial defense mechanism, CRISPR-Cas9, can be reprogrammed as a gene editing tool has revolutionized the field of gene editing. CRISPR-Cas9 can introduce a double-strand break at a specific targeted site within the genome. Subsequent intracellular repair mechanisms repair the double strand break that can either lead to gene knock-out (via the non-homologous end-joining pathway) or specific gene correction in the presence of a DNA template via homology-directed repair.

View Article and Find Full Text PDF

There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach.

View Article and Find Full Text PDF

The therapeutic potential of antigen-specific regulatory T cells (Treg) has been extensively explored, leading to the development of several tolerogenic vaccines. Dexamethasone-antigen conjugates represent a prominent class of tolerogenic vaccines that enable coordinated delivery of antigen and dexamethasone to target immune cells. The importance of nonspecific albumin association towards the biodistribution of antigen-adjuvant conjugates has gained increasing attention, by which hydrophobic and electrostatic interactions govern the association capacity.

View Article and Find Full Text PDF

Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the "holy grail" for the treatment of autoimmune diseases.

View Article and Find Full Text PDF

Induction of antigen-specific immune tolerance has emerged as the next frontier in treating autoimmune disorders, including atherosclerosis and graft-vs-host reactions during transplantation. Nanostructures are under investigation as a platform for the coordinated delivery of critical components, i.e.

View Article and Find Full Text PDF

The current treatment of autoimmune and chronic inflammatory diseases entails systemic immune suppression, which is associated with increased susceptibility to infections. To restore immune tolerance and reduce systemic side effects, a targeted approach using tolerogenic dendritic cells (tolDCs) is being explored. tolDCs are characterized by the expression of CD11c, the major histocompatibility complex (MHC)II and low levels of co-stimulatory molecules CD40 and CD86.

View Article and Find Full Text PDF

Liposomes are widely investigated as vaccine delivery systems, but antigen loading efficiency can be low. Moreover, adsorbed antigen may rapidly desorb under physiological conditions. Encapsulation of antigens overcomes the latter problem but results in significant antigen loss during preparation and purification of the liposomes.

View Article and Find Full Text PDF

Aims: CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis.

View Article and Find Full Text PDF

Atherosclerosis is characterized by the retention of lipids in foam cells in the arterial intima. The liver X receptor (LXR) agonist GW3965 is a promising therapeutic compound, since it induces reverse cholesterol transport in foam cells. However, hepatic LXR activation increases plasma and liver lipid levels, inhibiting its clinical development.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses.

View Article and Find Full Text PDF

Background And Aims: CD8 T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8 T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8 T-cell activation. Here, we address how this environment affects the functionality of CD8 T-cells.

View Article and Find Full Text PDF

Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis.

View Article and Find Full Text PDF

Aims: T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis.

Methods And Results: Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development.

View Article and Find Full Text PDF

Therapeutic vaccination with synthetic long peptides (SLP) can be clinically effective against HPV-induced premalignant lesions; however, their efficiency in established malignant lesions leaves room for improvement. Here, we report the high therapeutic potency of cationic liposomes loaded with well-defined tumor-specific SLPs and a TLR3 ligand as adjuvant. The cationic particles, with an average size of 160 nm, could strongly activate functional, antigen-specific CD8 and CD4 T cells and induced cytotoxicity against target cells after intradermal vaccination.

View Article and Find Full Text PDF

Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way.

View Article and Find Full Text PDF