SAR QSAR Environ Res
August 2024
SAR QSAR Environ Res
May 2021
The fumigant and topical activities exhibited by 27 plant-derived essentials oils (EOs) on adult housefly are predicted through the Quantitative Structure-Activity Relationship (QSAR) theory. These molecular structure based calculations are performed on 253 structurally diverse compounds from the EOs, where the number of constituents in each essential oil mixture varies between 2 to 24. A large number of 86,048 non-conformational mixture descriptors are derived as linear combinations of the molecular descriptors of the EO components.
View Article and Find Full Text PDFThe Quantitative Structure-Activity Relationships (QSAR) theory, which allows predicting the insecticidal activity of chemical compounds through calculations from the molecular structure, is applied on 23 essential oils composed of 402 structurally diverse compounds at different chemical compositions. A large number of 114,871 conformation-independent molecular descriptors are computed through different types of freely available open-source programs. Mixture descriptors are calculated based on molecular descriptors of the essential oil components and their composition.
View Article and Find Full Text PDFIn advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k ) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares.
View Article and Find Full Text PDFThe antiproliferative activities of a series of 36 naphthoquinone derivatives were subjected to a Quantitative Structure-Activity Relationships (QSAR) study. For this purpose a panel of four human cancer cell lines was used, namely HBL-100 (breast), HeLa (cervix), SW-1573 (non-small cell lung) and WiDr (colon). A conformation-independent representation of the chemical structure was established in order to avoid leading with the scarce experimental information on X-ray crystal structure of the drug interaction.
View Article and Find Full Text PDFA simple, clean, solvent-free preparation of flavones by the use of a silica-supported Preyssler heteropolyacid as reusable catalyst is described. High selectivity and very good yields (87-94%) were obtained in short reaction times (7-13 min). Bioassays for insecticidal activity against Spodoptera frugiperda were carried out with a set of flavones.
View Article and Find Full Text PDFWe establish useful models that relate experimentally measured biological activities of compounds to their molecular structure. The pED(50) feeding inhibition on Spodoptera litura species exhibited by aurones, chromones, 3-coumarones and flavones is analyzed in this work through the hypothesis encompassed in the Quantitative Structure-Activity Relationships (QSAR) Theory. This constitutes a first necessary computationally based step during the design of more bio-friendly repellents that could lead to insights for improving the insecticidal activities of the investigated compounds.
View Article and Find Full Text PDFWe performed a predictive analysis based on quantitative structure-activity relationships (QSAR) of an important property of flavonoids, which is the inhibition (IC(50)) of aldose reductase (AR). The importance of AR inhibition is that it prevents cataract formation in diabetic patients. The best linear model constructed from 55 molecular structures incorporated six molecular descriptors, selected from more than a thousand geometrical, topological, quantum-mechanical, and electronic types of descriptors.
View Article and Find Full Text PDFExperimentally assigned values to binding affinity constants of flavonoid ligands towards the benzodiazepine site of the GABA(A) receptor complex were compiled from several publications, and enabled to perform a predictive analysis based on Quantitative Structure-Activity Relationships (QSAR). The best linear model established on 78 molecular structures incorporated four molecular descriptors, selected from more than a thousand of geometrical, topological, quantum-mechanical and electronic types of descriptors and calculated by Dragon software. An application of this QSAR equation was performed by estimating the binding affinities for some newly synthesized flavonoids displaying 2-,7-substitutions in the benzopyrane backbone which still do not have experimentally measured potencies.
View Article and Find Full Text PDF