(+)-4-Propyl-9-hydroxynaphthoxazine ((+)PHNO) is a high affinity, preferential dopamine D versus D agonist employed in view of its high specificity and excellent signal-to-noise ratio as a radiotracer for positron emission tomography (PET) imaging. Surprisingly, its profile at other classes of monoamine receptor remains undocumented. In addition to hD and hD receptors, (+)PHNO revealed high affinity at hD but not hD or hD receptors.
View Article and Find Full Text PDFMicrotubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL).
View Article and Find Full Text PDFTrace Amine-Associated Receptor 1 (TAAR1) is a potential target for the treatment of depression and other CNS disorders. However, the precise functional roles of TAAR1 to the actions of clinically used antidepressants remains unclear. Herein, we addressed these issues employing the TAAR1 agonist, o-phenyl-iodotyramine (o-PIT), together with TAAR1-knockout (KO) mice.
View Article and Find Full Text PDFThe present studies characterized the functional profile of N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-1,2-dihydro-3-H-benzo[e]indole-3-carboxamide) (S32212), a combined serotonin (5-HT)(2C) receptor inverse agonist and α(2)-adrenoceptor antagonist that also possesses 5-HT(2A) antagonist properties (J Pharmacol Exp Ther 340:750-764, 2012). Upon parenteral and/or oral administration, dose-dependent (0.63-40.
View Article and Find Full Text PDFAlthough most antidepressants suppress serotonin (5-HT) and/or noradrenaline reuptake, blockade of 5-HT(2C) receptors and α(2)-adrenoceptors likewise enhances monoaminergic transmission. These sites are targeted by the urea derivative N- [4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-1,2-dihydro-3-H-benzo[e]indole-3-carboxamide (S32212). S32212 was devoid of affinity for monoamine reuptake sites, yet displayed pronounced affinity (pK(i), 8.
View Article and Find Full Text PDFEur Neuropsychopharmacol
September 2010
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.
View Article and Find Full Text PDFThough neurokinin(1) (NK(1)) receptor antagonists are active in experimental models of depression, clinical efficacy has proven disappointing. This encourages interest in association of NK(1) receptor blockade with inhibition of serotonin (5-HT) reuptake. The selective NK(1) antagonist, GR205171, dose-dependently enhanced citalopram-induced elevations of extracellular levels of 5-HT in frontal cortex, an action expressed stereospecifically vs its less active distomer, GR226206.
View Article and Find Full Text PDFMelanin-concentrating hormone (MCH)1 receptors are widely expressed in limbic structures and cortex. Their inactivation is associated with anxiolytic and antidepressive properties but little information is available concerning cognition. This issue was addressed using the selective antagonists, SNAP-7941 and GW3430, in a social recognition paradigm in rats.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
February 2008
The novel benzopyranopyrrolidine, S33138 [N-[4-[2-[(3aS,9bR)-8-cyano-1,3a,4,9b-tetrahydro[1]benzopyrano[3,4-c]pyrrol-2(3H)-yl)-ethyl]phenylacetamide], is a preferential antagonist of cloned human D(3) versus D(2L) and D(2S) receptors. In mice, S33138 (0.04-2.
View Article and Find Full Text PDFThough dopaminergic mechanisms modulate cholinergic transmission and cognitive function, the significance of specific receptor subtypes remains uncertain. Here, we examined the roles of dopamine D(3) versus D(2) receptors. By analogy with tacrine (0.
View Article and Find Full Text PDFAlthough dopaminergic mechanisms are known to modulate cognitive function and cholinergic transmission, their pharmacological characterization remains incomplete. Herein, the role of D1 sites was evaluated employing neurochemical and behavioural approaches. By analogy to the acetylcholinesterase inhibitor, galantamine (0.
View Article and Find Full Text PDFThese studies examined the influence of the selective 5-hydroxytryptamine (serotonin) (5-HT)(1A) receptor partial agonist S15535 [4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine] upon cholinergic transmission and cognitive function in rodents. In the absence of acetylcholinesterase inhibitors, S15535 dose-dependently (0.04-5.
View Article and Find Full Text PDFThese studies evaluated the potential antiparkinsonian properties of the novel dopamine D(3)/D(2) receptor agonist S32504 [(+)-trans-3,4,4a,5,6, 10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine] in comparison with those of the clinically employed agonist ropinirole. In rats with a unilateral, 6-hydroxydopamine lesion of the substantia nigra, S32504 (0.0025-0.
View Article and Find Full Text PDFThe GABAergic neurons represent a major neuronal population in the basal ganglia. Although alterations in serotonin (5-HT) transmission are associated with neurodegenerative diseases involving these regions, the influence exerted by 5-HT afferents on GABAergic populations remains poorly understood. Here, we examined the consequences of 5,7-dihydroxytryptamine-induced lesion of 5-HT neurons on glutamic acid decarboxylase (GAD) activity, mRNA expression of the two isoforms of the enzyme, GAD65 and GAD67, GABA uptake, and extracellular GABA levels in the striatum.
View Article and Find Full Text PDF