The main objective of this study was to map the quality of groundwater for domestic use in the Nabogo Basin, a sub-catchment of the White Volta Basin in Ghana, by applying machine learning techniques. The study was conducted by applying the Random Forest (RF) machine learning algorithm to predict groundwater quality, by utilizing factors that influence groundwater occurrence and quality such as Elevation, Topographical Wetness Index (TWI), Slope length (LS), Lithology, Soil type, Normalize Different Vegetation Index (NDVI), Rainfall, Aspect, Slope, Plan Curvature (PLC), Profile Curvature (PRC), Lineament density, Distance to faults, and Drainage density. The groundwater quality of the area was predicted by building a Random Forest model based on computed Arithmetic Water Quality Indices (WQI) (as dependent variable) of existing boreholes, to serve as an indicator of the groundwater quality.
View Article and Find Full Text PDF