Background Large-scale secondary use of clinical databases requires automated tools for retrospective extraction of structured content from free-text radiology reports. Purpose To share data and insights on the application of privacy-preserving open-weights large language models (LLMs) for reporting content extraction with comparison to standard rule-based systems and the closed-weights LLMs from OpenAI. Materials and Methods In this retrospective exploratory study conducted between May 2024 and September 2024, zero-shot prompting of 17 open-weights LLMs was preformed.
View Article and Find Full Text PDFObjectives: To investigate the potential and limitations of utilizing transformer-based report annotation for on-site development of image-based diagnostic decision support systems (DDSS).
Methods: The study included 88,353 chest X-rays from 19,581 intensive care unit (ICU) patients. To label the presence of six typical findings in 17,041 images, the corresponding free-text reports of the attending radiologists were assessed by medical research assistants ("gold labels").