Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-talk, and heating. Here, we show that by engineering the hopping of spins between quantum dots with a site-dependent spin quantization axis, quantum control can be established with discrete signals.
View Article and Find Full Text PDFThe developmental biology underlying the morphogenesis of mushrooms remains poorly understood despite the essential role of fungi in the terrestrial environment and global carbon cycle. The mushroom Coprinopsis cinerea is a leading model system for the molecular and cellular basis of fungal morphogenesis. The dikaryotic vegetative hyphae of this fungus grow by tip growth with clamp cell formation, conjugate nuclear division, septation, subapical peg formation, and fusion of the clamp cell to the peg.
View Article and Find Full Text PDFDcAFF (discontinuous aligned fibre filament) is a novel material for fused filament fabrication (FFF) 3D printing made of highly aligned discontinuous fibres produced using high performance discontinuous fibre (HiPerDiF) technology. It reinforces a thermoplastic matrix to provide high mechanical performance and formability. Accurate printing of DcAFF poses a challenge, especially for complex geometries, because: (i) there is a discrepancy between the path where the filament experiences the adhering pressure from the filleted nozzle and the nozzle path; and (ii) the rasters display poor adhesion to the build platform immediately after deposition, which causes the filament to be dragged when the printing direction changes.
View Article and Find Full Text PDFThis paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work.
View Article and Find Full Text PDFThe curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature.
View Article and Find Full Text PDFBackground: The purpose of this study was to determine the efficacy of operative management for the treatment of patients with an extra-lateral distal clavicle fracture pattern. This fracture pattern is not currently included in the modified Neer classification.
Methods: We retrospectively reviewed 48 patients who underwent open reduction and internal fixation of an acute extra-lateral distal clavicle fracture pattern between August 2005 and March 2019.
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases.
View Article and Find Full Text PDFIn this work, aligned discontinuous fibre composite (ADFRC) tapes were developed and investigated as precursors for a novel 3D printing filament. ADFRCs have the potential to achieve mechanical performance comparable to continuous fibre reinforced composites, given sufficient fibre length and high level of alignment, and avoid many of the manufacturing difficulties associated with continuous fibres, e.g.
View Article and Find Full Text PDFAntisense oligonucleotides (ASOs) are becoming important drugs for hard to treat diseases. Modifications to their DNA backbones are essential to inhibit degradation in vivo, but they can reduce binding affinity to RNA targets. To address this problem we have combined the enzymatic resistance of carbamate (CBM) DNA backbone analogues with the thermodynamic stability conferred by locked nucleic acid sugars (LNA).
View Article and Find Full Text PDFCell shape is well described by membrane curvature. Septins are filament-forming, GTP-binding proteins that assemble on positive, micrometer-scale curvatures. Here, we examine the molecular basis of curvature sensing by septins.
View Article and Find Full Text PDFIn the supramolecular chemistry field, coordination-driven self-assembly has provided the basis for tremendous growth across many subdisciplines, spanning from fundamental investigations regarding the design and synthesis of new architectures to defining different practical applications. Within this framework, supramolecular coordination complexes (SCCs), defined as large chemical entities formed from smaller precursor building blocks of ionic metal nodes and organic multidentate ligands, resulting in intricate and well-defined supramolecular structures, hold great promise. Notably, interest in the construction of discrete 3D molecular architectures, such as those offered by SCCs, has experienced extraordinary progress because of their potential application as sensors, catalysts, probes, and containers and in basic host-guest chemistry.
View Article and Find Full Text PDFMembrane curvature is a fundamental feature of cells and their organelles. Much of what we know about how cells sense curved surfaces comes from studies examining nanometer-sized molecules on nanometer-scale curvatures. We are only just beginning to understand how cells recognize curved topologies at the micron scale.
View Article and Find Full Text PDFCell polarity is fundamental to the function of most cells. The evolutionarily conserved molecular machinery that controls cell polarity is centered on a family of GTPases related to Cdc42. Cdc42 becomes activated and concentrated at polarity sites, but studies in yeast model systems led to controversy on the mechanisms of polarization.
View Article and Find Full Text PDFThe location of nucleosomes in SV40 virions and minichromosomes isolated during infection were determined by next generation sequencing (NGS). The patterns of reads within the regulatory region of chromatin from wild-type virions indicated that micrococcal nuclease-resistant nucleosomes were specifically positioned at nt 5223 and nt 363, while in minichromosomes isolated 48 h post-infection we observed nuclease-resistant nucleosomes at nt 5119 and nt 212. The nucleosomes at nt 5223 and nt 363 in virion chromatin would be expected to repress early and late transcription, respectively.
View Article and Find Full Text PDFThe highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front.
View Article and Find Full Text PDFPolarity establishment in many cells is thought to occur via positive feedback that reinforces even tiny asymmetries in polarity protein distribution. Cdc42 and related GTPases are activated and accumulate in a patch of the cortex that defines the front of the cell. Positive feedback enables spontaneous polarization triggered by stochastic fluctuations, but as such fluctuations can occur at multiple locations, how do cells ensure that they make only one front? In polarizing cells of the model yeast Saccharomyces cerevisiae, positive feedback can trigger growth of several Cdc42 clusters at the same time, but this multi-cluster stage rapidly evolves to a single-cluster state, which then promotes bud emergence.
View Article and Find Full Text PDFEstablishment of cell polarity in animal and fungal cells involves localization of the conserved Rho-family guanosine triphosphatase, Cdc42, to the cortical region destined to become the "front" of the cell. The high local concentration of active Cdc42 promotes cytoskeletal polarization through various effectors. Cdc42 accumulation at the front is thought to involve positive feedback, and studies in the budding yeast Saccharomyces cerevisiae have suggested distinct positive feedback mechanisms.
View Article and Find Full Text PDFThis article provides an evidence-based review of open hernia repair. Technical considerations in general, including perioperative management of the patient, and the most currently used open repairs are addressed. Outcomes after repair are reviewed using the latest available literature.
View Article and Find Full Text PDF