Publications by authors named "Benjamin W Pruitt"

Here, we present a generalized method of guide RNA "tuning" that enables Cas9 to discriminate between two target sites that differ by a single-nucleotide polymorphism. We employ our methodology to generate an in vivo mutation prevention system in which Cas9 actively restricts the occurrence of undesired gain-of-function mutations within a population of engineered organisms. We further demonstrate that the system is scalable to a multitude of targets and that the general tuning and prevention concepts are portable across engineered Cas9 variants and Cas9 orthologs.

View Article and Find Full Text PDF

Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on comparing different Cas9-based transcription factor systems to see how effective they are at activating gene expression in various cell types, including human, mouse, and fly cells.
  • Researchers aim to uncover which systems are the most powerful and if combining top activators can enhance gene expression further.
  • The investigation also looks into how cooperative interactions between activators contribute to maximizing the level of gene expression achieved.
View Article and Find Full Text PDF

We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

View Article and Find Full Text PDF
Article Synopsis
  • The Cas9 protein, originally a nuclease, can be modified to act as a programmable transcription factor, although its initial effectiveness for gene activation was limited.
  • Researchers developed a more effective transcriptional regulator by combining a designed tripartite activator called VPR with a modified, non-nuclease version of Cas9.
  • This new regulator successfully activates both coding and noncoding genes, allows for simultaneous targeting of multiple genes, and promotes the differentiation of human induced pluripotent stem cells into neurons.
View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful tool for functional genomics with the capacity to comprehensively analyze host-pathogen interactions. High-throughput RNAi screening is used to systematically perturb cellular pathways and discover therapeutic targets, but the method can be tedious and requires extensive capital equipment and expensive reagents. To aid in the development of an inexpensive miniaturized RNAi screening platform, we have developed a two part microfluidic system for patterning and screening gene targets on-chip to examine cellular pathways involved in virus entry and infection.

View Article and Find Full Text PDF

Streptococcus mutans is a commensal member of the healthy plaque biofilm and the primary causative agent of dental caries. The present study is an investigation of SloR, a 25-kDa metalloregulatory protein that modulates genes responsible for S. mutans-induced cariogenesis.

View Article and Find Full Text PDF