Publications by authors named "Benjamin Vial"

We report the design, fabrication and experimental verification of an illusion device working at microwave frequencies. A two dimensional topology optimization procedure is employed to find the binary layout of a dielectric coating that, when wrapped around a metallic cylinder, mimics the scattering from a predefined, arbitrarily-shaped dielectric object. Fabrication is carried out with 3D-printing and spatially resolved near field measurements in a waveguide configuration were performed, allowing us to map the illusion effect.

View Article and Find Full Text PDF

We present the design of an all-dielectric cloaking device at microwave frequencies. A gradient based topology optimization is employed to find a dielectric permittivity distribution that minimizes the diffracted field in free space. The layout is binary, i.

View Article and Find Full Text PDF

Subwavelength-sized dielectric Mie resonators have recently emerged as a promising photonic platform, as they combine the advantages of dielectric microstructures and metallic nanoparticles supporting surface plasmon polaritons. Here, we report the capabilities of a dewetting-based process, independent of the sample size, to fabricate Si-based resonators over large scales starting from commercial silicon-on-insulator (SOI) substrates. Spontaneous dewetting is shown to allow the production of monocrystalline Mie-resonators that feature two resonant modes in the visible spectrum, as observed in confocal scattering spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arrays of square coaxial apertures in a gold layer behave in terms of diffraction, highlighting their resonant transmission enhancement.
  • This enhancement is leveraged to create tunable bandpass filters suitable for multispectral imaging in the 7-13 μm wavelength range.
  • A modal analysis reveals that the resonance peaks result from leaky modes in the structure, and experimental measurements confirm the filter's performance, showing angular tolerance of up to 30 degrees.
View Article and Find Full Text PDF

We propose an Adaptive Perfectly Matched Layer (APML) to be used in diffraction grating modeling. With a properly tailored co-ordinate stretching depending both on the incident field and on grating parameters, the APML may efficiently absorb diffracted orders near grazing angles (the so-called Wood's anomalies). The new design is implemented in a finite element method (FEM) scheme and applied on a numerical example of a dielectric slit grating.

View Article and Find Full Text PDF