Publications by authors named "Benjamin Van Mooy"

Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP).

View Article and Find Full Text PDF

is a diverse picocyanobacterial genus and the most abundant phototroph on Earth. Its photosynthetic diversity divides it into high-light (HL)- or low-light (LL)-adapted groups representing broad phylogenetic grades-each composed of several monophyletic clades. Here, we physiologically characterize four new strains isolated from below the deep chlorophyll maximum in the North Pacific Ocean.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated how marine snow, composed of microscopic organic particles, sinks in the ocean and helps sequester carbon, which plays a critical role in regulating Earth's climate.
  • Using advanced tracking microscopy, they studied newly collected marine snow particles and discovered a comet-like shape due to fluid interactions, which significantly slows down their sinking speed.
  • The study's findings led to the development of a simplified model to better understand the sedimentation of these particles, enhancing predictions about marine snow behavior in the ocean.
View Article and Find Full Text PDF

High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat.

View Article and Find Full Text PDF

Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders.

View Article and Find Full Text PDF

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth.

View Article and Find Full Text PDF

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension.

View Article and Find Full Text PDF

Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments.

View Article and Find Full Text PDF

Global-scale surveys of plankton communities using "omics" techniques have revolutionized our understanding of the ocean. Lipidomics has demonstrated the potential to add further essential insights on ocean ecosystem function but has yet to be applied on a global scale. We analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate-mass mass spectrometry analytical workflow, revealing previously unknown characteristics of ocean planktonic lipidomes.

View Article and Find Full Text PDF

Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates.

View Article and Find Full Text PDF

Extracellular vesicles are small (~50-200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles - a prerequisite for determining function - we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus.

View Article and Find Full Text PDF

Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity.

View Article and Find Full Text PDF

The bloom-forming cyanobacteria contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of . These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid.

View Article and Find Full Text PDF

Although the natural occurrence of arsenic-containing lipids (arsenolipids) in marine organisms is now well established, the possible role of these unusual compounds in organisms and in the cycling of arsenic in marine systems remains largely unexplored. We report the finding of arsenolipids in 61 plankton samples collected from surface marine waters of high- and low-nutrient content along a transect spanning the Gulf Stream in the North Atlantic Ocean. Using high-performance liquid chromatography (HPLC) coupled to both elemental and molecular mass spectrometry, we show that all 61 plankton samples contained six identifiable arsenolipids, namely, three arsenosugar phospholipids (AsPL958, 10-13%; AsPL978, 13-25%; and AsPL1006, 7-10% of total arsenolipids), two arsenic-containing hydrocarbons (AsHC332, 4-10% and AsHC360, 1-2%), and a methoxy-sugar arsenolipid that contained phytol (AsSugPhytol, 1-3%).

View Article and Find Full Text PDF

Seeps, spills and other oil pollution introduce hydrocarbons into the ocean. Marine cyanobacteria also produce hydrocarbons from fatty acids, but little is known about the size and turnover of this cyanobacterial hydrocarbon cycle. We report that cyanobacteria in an oligotrophic gyre mainly produce n-pentadecane and that microbial hydrocarbon production exhibits stratification and diel cycling in the sunlit surface ocean.

View Article and Find Full Text PDF
Article Synopsis
  • Sunlight significantly influences the daily patterns of phytoplankton activity, impacting ocean biogeochemical cycles.
  • Researchers studied phytoplankton in the North Pacific Subtropical Gyre, observing daily changes in pigment levels that suggest night is for metabolic recovery and daytime focuses on photoprotection.
  • The study found synchronized gene expression patterns related to photosynthesis across different taxa, but also noted that environmental factors affect pigment levels, highlighting the need for a combined approach using metatranscriptomics, proteomics, and metabolomics to better understand these dynamics.
View Article and Find Full Text PDF

Whale digestion plays an integral role in many ocean ecosystems. By digesting enormous quantities of lipid-rich prey, whales support their energy intensive lifestyle, but also excrete nutrients important to ocean biogeochemical cycles. Nevertheless, whale digestion is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Diatom blooms significantly contribute to marine ecosystem productivity and support higher trophic levels, but they also produce oxylipins that can inhibit copepod reproduction and microzooplankton growth when stressed.
  • Research demonstrates that when the diatom Phaeodactylum tricornutum is grazed on by the dinoflagellate Oxyrrhis marina, it increases the production of nitric oxide (NO) and alters its oxylipin profile, enhancing its defense and survival capabilities.
  • Additionally, higher NO levels and oxylipins deter grazing by O. marina, implying that these signaling pathways play a crucial role in diatom community dynamics by influencing predator-prey interactions.
View Article and Find Full Text PDF
Article Synopsis
  • Diatoms are crucial for ocean ecology, contributing over 40% of marine primary productivity by linking silicon and carbon cycles.
  • Limited silicon (Si) availability increases viral infections and mortality in diatom populations, particularly in coastal waters of the California Current Ecosystem.
  • Research shows that Si stress in diatoms promotes early stages of viral infection, highlighting the significant role of viruses in diatom health and their impact on biogeochemical cycles.
View Article and Find Full Text PDF

Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E.

View Article and Find Full Text PDF

Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients.

View Article and Find Full Text PDF

Sunlight is the dominant control on phytoplankton biosynthetic activity, and darkness deprives them of their primary external energy source. Changes in the biochemical composition of phytoplankton communities over diel light cycles and attendant consequences for carbon and energy flux in environments remain poorly elucidated. Here we use lipidomic data from the North Pacific subtropical gyre to show that biosynthesis of energy-rich triacylglycerols (TAGs) by eukaryotic nanophytoplankton during the day and their subsequent consumption at night drives a large and previously uncharacterized daily carbon cycle.

View Article and Find Full Text PDF

Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre.

View Article and Find Full Text PDF

Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non-calcified (naked) cells.

View Article and Find Full Text PDF