Publications by authors named "Benjamin Travis"

The reduction of CO to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO to methanol at ambient temperature and pressure.

View Article and Find Full Text PDF

Extracellular vesicles are small, heterogenous, phospholipid-rich vesicles that are secreted by all cells into the extracellular space. They play a key role in intercellular communication because they can transport a variety of biomolecules such as proteins, lipids, and nucleic acids between cells. As categorized by the International Society of Extracellular Vesicles (ISEV), the term EV encompasses different sub-types, including exosomes, microvesicles, and apoptotic bodies, which differ in their size, origin, and cargo.

View Article and Find Full Text PDF

Nerve agents (NAs) induce a severe cholinergic crisis that can lead to status epilepticus (SE). Current guidelines for treatment of NA-induced SE only include prehospital benzodiazepines, which may not fully resolve this life-threatening condition. This study examined the efficacy of general clinical protocols for treatment of SE in the specific context of NA poisoning in adult male rats.

View Article and Find Full Text PDF

A series of homogeneous Fe(iii) complexes were recently reported that are active for electrocatalytic hydrogen generation. Herein we report a naphthalene-terminated Fe(iii) complex for use in the functionalization of glassy carbon surfaces for electrocatalytic hydrogen generation with retention of catalytic activity.

View Article and Find Full Text PDF

Background: The anti-inflammatory cytokine interleukin-10 (IL-10) has been explored previously as a treatment method for spinal cord injury (SCI) due to its ability to attenuate pro-inflammatory cytokines and reduce apoptosis. Primary limitations when using systemic injections of IL-10 are that it is rapidly cleared from the injury site and that it does not cross the blood-spinal cord barrier.

Objective: Here, mineral-coated microparticles (MCMs) were used to obtain a local sustained delivery of IL-10 directly into the injury site after SCI.

View Article and Find Full Text PDF

The structural principles that govern interactions between l- and d-peptides are not well understood. Among natural proteins, coiled-coil assemblies formed between or among α-helices are the most regular feature of tertiary and quaternary structures. We recently reported the first high-resolution structures for heterochiral coiled-coil dimers, which represent a starting point for understanding associations of l- and d-polypeptides.

View Article and Find Full Text PDF

Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury.

View Article and Find Full Text PDF

There remains a need for new non-ionic detergents that are suitable for use in biochemical and biophysical studies of membrane proteins. Here we explore the properties of n-dodecyl-β-melibioside (β-DDMB) micelles as a medium for membrane proteins. Melibiose is d-galactose-α(1→6)-d-glucose.

View Article and Find Full Text PDF

Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g.

View Article and Find Full Text PDF

Hydrogen peroxide was employed as the terminal oxidant in the osmium tetroxide mediated oxidative cleavage of olefins, producing the corresponding aldehyde and ketone products. Aryl olefins are cleaved in good to excellent yield regardless of arene electronics. Alkyl olefins cleave in moderate to good yield for di- and tri-substituted alkenes.

View Article and Find Full Text PDF

Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized.

View Article and Find Full Text PDF

Bolaamphiphile-class surfactants composed of two hydrophilic (maltoside) headgroups connected by long saturated alkyl chains were tested for their ability to stabilize a solubilized membrane protein, Escherichia coli diacylglycerol kinase (DAGK), and to sustain its native function. Members of this "Bis-MALT-C(18-28)" series were poor solubilizers of DAGK in the absence of conventional detergent. However, mixed micelles of the bolaamphiphiles with either dodecylphosphocholine or beta-n-decyl maltoside were more effective and enhanced DAGK's thermal stability relative to corresponding detergent-only conditions.

View Article and Find Full Text PDF

Presented is a methodology to oxidatively cleave alpha-hydroxyketones and alpha- or beta-diones using the environmentally benign reagent KHSO(5), prepared easily from Oxone, to diesters in one simple transformation. In addition, we undertook a mechanistic study to provide a plausible mechanistic interpretation. These reactions may prove to be valuable alternatives to other related metal-mediated processes.

View Article and Find Full Text PDF

[reaction: see text] A highly efficient, mild, and simple protocol is presented for the tandem OsO(4)-mediated oxidative cleavage/oxidative lactonization of alkenols to lactones. The protocol couples the OsO(4)-catalyzed oxidative cleavage of olefins with Oxone as the co-oxidant with the direct oxidation of aldehydes in alcoholic solvents to their corresponding esters.

View Article and Find Full Text PDF

[reaction: see text] A highly efficient, mild, and simple protocol is presented for the oxidation of aldehydes to carboxylic acids utilizing Oxone as the sole oxidant. Direct conversion of aldehydes in alcoholic solvents to their corresponding ester products is also reported. These reactions may prove to be valuable alternatives to traditional metal-mediated oxidations.

View Article and Find Full Text PDF

A mild, organometallic alternative to ozonolysis utilizing oxone and OsO(4) is presented. This is a direct oxidation of olefins via the carbon-carbon cleavage of an osmate ester by the action of oxone. Twenty-four different olefins were converted to their corresponding ketones or carboxylic acids in high yields (>80%).

View Article and Find Full Text PDF