Publications by authors named "Benjamin Trampe"

Doubled haploid (DH) technology in maize takes advantage of in vivo haploid induction (HI) triggered by pollination of donors of interest with inducer genotypes. However, the ability of different donors to be induced-inducibility (IND), varies among germplasm and the underlying molecular mechanisms are still unclear. In this study, the phenotypic variation for IND in a mapping population of temperate inbred lines was evaluated to identify regions in the maize genome associated with IND.

View Article and Find Full Text PDF

A major QTL for SHGD was identified on chromosome 5 with stable expression across environments. The introgression this QTL can overcome the need of colchicine in DH lines development. Genome doubling of haploids is one of the major constraints of large-scale doubled haploid (DH) technology.

View Article and Find Full Text PDF

In vivo doubled haploid (DH) technology is widely used in commercial maize (Zea mays L.) breeding. Haploid genome doubling is a critical step in DH breeding.

View Article and Find Full Text PDF

haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter- and intraspecific via chromosome elimination.

View Article and Find Full Text PDF