A common feature in patients with abdominal aortic aneurysms (AAAs) is the formation of a nonocclusive intraluminal thrombus (ILT) in regions of aortic dilation. Platelets are known to maintain hemostasis and propagate thrombosis through several redundant activation mechanisms, yet the role of platelet activation in the pathogenesis of AAA-associated ILT is still poorly understood. Thus, we sought to investigate how platelet activation affects the pathogenesis of AAA.
View Article and Find Full Text PDFCurrent antiplatelet therapies have several clinical complications and are mostly irreversible in terms of suppressing platelet activity; hence, there is a need to develop improved therapeutic agents. Previous studies have implicated RhoA in platelet activation. Here, we further characterized the lead RhoA inhibitor, Rhosin/G04, in platelet function and present structure-activity relationship (SAR) analysis.
View Article and Find Full Text PDFPlatelets play a critical role in hemostasis and thrombosis; therefore, in vitro assays that measure platelet reactivity are fundamental tools to gain insight into these physiologic processes, to diagnose platelet disorders, and to develop antithrombotic therapies. However, conventional platelet assays such as aggregometry, the clinical gold standard for assessing platelet function, are low throughput and require specialized equipment. Since platelets have a finite life span ex vivo, processes to miniaturize and multiplex assays allow a much broader overview of platelet function in significantly less time than conventional assays.
View Article and Find Full Text PDFThe antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity.
View Article and Find Full Text PDFImmune thrombocytopenia (ITP) is an acquired bleeding disorder characterized by immunoglobulin G (IgG)-mediated platelet destruction. Current therapies primarily focus on reducing antiplatelet antibodies using immunosuppression or increasing platelet production with thrombopoietin mimetics. However, there are no universally safe and effective treatments for patients presenting with severe life-threatening bleeding.
View Article and Find Full Text PDFThe association between inflammation, infection, and venous thrombosis has long been recognized; yet, only in the last decades have we begun to understand the mechanisms through which the immune and coagulation systems interact and reciprocally regulate one another. These interconnected networks mount an effective response to injury and pathogen invasion, but if unregulated can result in pathological thrombosis and organ damage. Neutrophils, monocytes, and platelets interact with each other and the endothelium in host defense and also play critical roles in the formation of venous thromboembolism.
View Article and Find Full Text PDFIntroduction: Despite the great promise for therapies using antisense oligonucleotides (ASOs), their adverse effects, which include pro-inflammatory effects and thrombocytopenia, have limited their use. Previously, these effects have been linked to the phosphorothioate (PS) backbone necessary to prevent rapid ASO degradation in plasma. The main aim of this study was to assess the impact of the nucleic acid portion of an ASO-type drug on platelets and determine if it may contribute to thrombosis or thrombocytopenia.
View Article and Find Full Text PDFThe oxylipins, 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid (5S,12S-diHETE) and 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid (5S,15S-diHETE), have been identified in cell exudates and have chemotactic activity toward eosinophils and neutrophils. Their biosynthesis has been proposed to occur by sequential oxidations of arachidonic acid (AA) by lipoxygenase enzymes, specifically through oxidation of AA by h5-LOX followed by h12-LOX, h15-LOX-1, or h15-LOX-2. In this work, h15-LOX-1 demonstrates altered positional specificity when reacting with 5S-HETE, producing 90% 5S,12S-diHETE, instead of 5S,15S-diHETE, with kinetics 5-fold greater than that of h12-LOX.
View Article and Find Full Text PDFThe two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1.
View Article and Find Full Text PDFHuman reticulocyte 15-lipoxygenase-1 (h15-LOX-1 or ALOX15) and platelet 12-lipoxygenase (h12-LOX or ALOX12) catalysis of docosahexaenoic acid (DHA) and the maresin precursor, 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA), were investigated to determine their product profiles and relative rates in the biosynthesis of the key maresin intermediate, 13S,14S-epoxy-4Z,7Z,9E,11E,16Z,19Z-docosahexaenoic acid (13S,14S-epoxy-DHA). Both enzymes converted DHA to 14S-HpDHA, with h12-LOX having a 39-fold greater / value (14.0 ± 0.
View Article and Find Full Text PDFDeep vein thrombosis (DVT), caused by alterations in venous homeostasis is the third most common cause of cardiovascular mortality; however, key molecular determinants in venous thrombosis have not been fully elucidated. Several lines of evidence indicate that DVT occurs at the intersection of dysregulated inflammation and coagulation. The enzyme ectonucleoside tri(di)phosphohydrolase (ENTPD1, also known as CD39) is a vascular ecto-apyrase on the surface of leukocytes and the endothelium that inhibits intravascular inflammation and thrombosis by hydrolysis of phosphodiester bonds from nucleotides released by activated cells.
View Article and Find Full Text PDFThe reaction of 5 S,15 S-dihydroperoxyeicosatetraenoic acid (5,15-diHpETE) with human 5-lipoxygenase (LOX), human platelet 12-LOX, and human reticulocyte 15-LOX-1 was investigated to determine the reactivity and relative rates of producing lipoxins (LXs). 5-LOX does not react with 5,15-diHpETE, although it can produce LXA when 15-HpETE is the substrate. In contrast, both 12-LOX and 15-LOX-1 react with 5,15-diHpETE, forming specifically LXB.
View Article and Find Full Text PDFThe dihomo-γ-linolenic acid (DGLA)-derived metabolite of 12-lipoxygenase, 12-hydroxy-eicosatrienoic acid (12-HETrE), was recently shown to potently inhibit thrombus formation without prolonging bleeding in murine models. Although 12-HETrE was found to inhibit platelet activation via the Gα signaling pathway, the Gα-coupled receptor by which 12-HETrE mediates its antiplatelet effects has yet to be identified. Defining the receptor by which 12-HETrE exerts its effects is key to determining its therapeutic potential as an antiplatelet drug.
View Article and Find Full Text PDFTrends Pharmacol Sci
November 2017
Platelets are key contributors to the formation of occlusive thrombi; the major underlying cause of ischemic heart disease and stroke. Antiplatelet therapy has reduced the morbidity and mortality associated with thrombotic events; however, the utility of current antiplatelet therapies is limited by the concomitant risk of an adverse bleeding event. Novel antiplatelet therapies that are more efficacious at inhibiting thrombosis while minimally affecting hemostasis are required.
View Article and Find Full Text PDFObjective: Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis.
View Article and Find Full Text PDFObjective: Dietary supplementation with polyunsaturated fatty acids has been widely used for primary and secondary prevention of cardiovascular disease in individuals at risk; however, the cardioprotective benefits of polyunsaturated fatty acids remain controversial because of lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 polyunsaturated fatty acid, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-hydroxy-8Z,10E,14Z-eicosatrienoic acid (12(S)-HETrE), inhibiting platelet activation and thrombosis.
Approach And Results: DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX(-/-)).
Arterioscler Thromb Vasc Biol
April 2015
Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2014
Objective: Black individuals are at an increased risk of myocardial infarction and stroke, 2 vascular diseases with strong thrombotic components. Platelet activation is a key step in platelet clot formation leading to myocardial infarction and stroke, and recent work supports a racial difference in platelet aggregation through the thrombin protease-activated receptors (PARs). The underlying mechanism for this racial difference, however, has not been established.
View Article and Find Full Text PDFPlatelets are essential in maintaining hemostasis following inflammation or injury to the vasculature. Dysregulated platelet activity often results in thrombotic complications leading to myocardial infarction and stroke. Activation of the FcγRIIa receptor leads to immune-mediated thrombosis, which is often life threatening in patients undergoing heparin-induced thrombocytopenia or sepsis.
View Article and Find Full Text PDFThe prevalence of cardiovascular disease (CVD), the leading cause of death in the US, is predicted to increase due to the shift in age of the general population and increase in CVD risk factors such as obesity and diabetes. New therapies are required to decrease the prevalence of CVD risk factors (obesity and diabetes) as well as reduce atherothrombosis, the major cause of CVD related mortality. Oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids, play a role in the progression of CVD risk factors and thrombosis.
View Article and Find Full Text PDFImmune complexes consisting of heparin, platelet factor 4 (PF4), and PF4/heparin-reactive antibodies are central to the pathogenesis of heparin-induced thrombocytopenia (HIT). It is as yet unclear what triggers the initial induction of pathogenic antibodies. We identified B cells in peripheral blood of healthy adults that produce PF4/heparin-specific antibodies following in vitro stimulation with proinflammatory molecules containing deoxycytosine-deoxyguanosine (CpG).
View Article and Find Full Text PDFThe activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs).
View Article and Find Full Text PDFPECAM-1 is a cell adhesion and signaling receptor that is expressed on many hematopoietic cells and at endothelial cell-cell junctions. Accumulating evidence from a number of in vitro and in vivo model systems suggests that PECAM-1 suppresses cytokine production and vascular permeability induced by a wide range of inflammatory stimuli. In several of these models of inflammatory disease, endothelial, and not leukocyte or platelet, PECAM-1 conferred protection against inflammatory insult.
View Article and Find Full Text PDF