Publications by authors named "Benjamin Thiria"

We investigate the impact of confinement density (i.e., the number of individuals in a group per unit area of available space) on transitions from the polarized to milling state, using groups of rummy-nose tetra fish (Hemigrammus rhodostomus) under controlled experimental conditions.

View Article and Find Full Text PDF

We experimentally investigate the role of illumination on the collective dynamics of a large school (ca. 50 individuals) of Hemigrammus rhodostomus. The structure of the group, defined using two order parameters, is quantified while progressively altering the visual range of the fish through controlled cycles of ambient light intensity.

View Article and Find Full Text PDF

For fish, swimming in group may be favorable to individuals. Several works reported that in a fish school, individuals sense and adjust their relative position to prevent collisions and maintain the group formation. Also, from a hydrodynamic perspective, relative-position and kinematic synchronisation between adjacent fish may considerably influence their swimming performance.

View Article and Find Full Text PDF

This paper addresses the physical mechanism of intermittent swimming by considering the burst-and-coast regime of fish swimming at different speeds. The burst-and-coast regime consists of a cycle with two successive phases, i.e.

View Article and Find Full Text PDF

In-phase and anti-phase synchronization of neighboring swimmers is examined experimentally using two self-propelled independent flexible foils swimming side-by-side in a water tank. The foils are actuated by pitching oscillations at one extremity-the head of the swimmers-and the flow engendered by their undulations is analyzed using two-dimensional particle image velocimetry in their frontal symmetry plane. Following recent observations on the behavior of real fish, we focus on the comparison between in-phase and anti-phase actuation by fixing all other geometric and kinematic parameters.

View Article and Find Full Text PDF

The physical basis for fish schooling is examined using three-dimensional numerical simulations of a pair of swimming fish, with kinematics and geometry obtained from experimental data. Energy expenditure and efficiency are evaluated using a cost of transport function, while the effect of schooling on the stability of each swimmer is examined by probing the lateral force and the lateral and longitudinal force fluctuations. We construct full maps of the aforementioned quantities as functions of the spatial pattern of the swimming fish pair and show that both energy expenditure and stability can be invoked as possible reasons for the swimming patterns and tail-beat synchronization observed in real fish.

View Article and Find Full Text PDF

In this paper, we present a short review on some of significative results on insect flapping flight. In particular, we focus on the time varying shape mechanisms observed during the flapping cycle that are used by insects to enhance the production of aerodynamic force. We then discuss a few examples on how these mechanisms are adapted to energy harvesters in engineered applications.

View Article and Find Full Text PDF

The question of how individuals in a population organize when living in groups arises for systems as different as a swarm of microorganisms or a flock of seagulls. The different patterns for moving collectively involve a wide spectrum of reasons, such as evading predators or optimizing food prospection. Also, the schooling pattern has often been associated with an advantage in terms of energy consumption.

View Article and Find Full Text PDF

The propulsive dynamics of a flexible undulating foil in a self-propelled swimming configuration near a wall is studied experimentally. Measurements of the swimming speed and the propulsive force are presented, together with image acquisition of the kinematics of the foil and particle image velocimetry (PIV) in its wake. The presence of the wall enhances the cruising velocity in some cases up to 25% and the thrust by a 45% , for swept angles of 160 and 240°.

View Article and Find Full Text PDF

Swimmers in nature use body undulations to generate propulsive and manoeuvring forces. The anguilliform kinematics is driven by muscular actions all along the body, involving a complex temporal and spatial coordination of all the local actuations. Such swimming kinematics can be reproduced artificially, in a simpler way, by using the elasticity of the body passively.

View Article and Find Full Text PDF

Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear.

View Article and Find Full Text PDF

Wing flexibility governs the flying performance of flapping-wing flyers. Here, we use a self-propelled flapping-wing model mounted on a "merry go round" to investigate the effect of wing compliance on the propulsive efficiency of the system. Our measurements show that the elastic nature of the wings can lead not only to a substantial reduction in the consumed power, but also to an increment of the propulsive force.

View Article and Find Full Text PDF