Publications by authors named "Benjamin T Vroman"

Two signaling pathways are activated by antineoplastic therapies that damage DNA and stall replication. In one pathway, double-strand breaks activate ataxia-telangiectasia mutated kinase (ATM) and checkpoint kinase 2 (Chk2), two protein kinases that regulate apoptosis, cell-cycle arrest, and DNA repair. In the second pathway, other types of DNA lesions and replication stress activate the Rad9-Hus1-Rad1 complex and the protein kinases ataxia-telangiectasia mutated and Rad3-related kinase (ATR) and checkpoint kinase 1 (Chk1), leading to changes that block cell-cycle progression, stabilize stalled replication forks, and influence DNA repair.

View Article and Find Full Text PDF

Previous studies demonstrated that ataxia telangiectasia mutated- and Rad3-related (ATR) kinase and its downstream target checkpoint kinase 1 (Chk1) facilitate survival of cells treated with nucleoside analogs and other replication inhibitors. Recent results also demonstrated that Chk1 is depleted when cells are treated with heat shock protein 90 (Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). The present study examined the effects of 17-AAG and its major metabolite, 17-aminogeldanamycin (17-AG), on Chk1 levels and cellular responses to cytarabine in human acute myelogenous leukemia (AML) cell lines and clinical isolates.

View Article and Find Full Text PDF

Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown.

View Article and Find Full Text PDF

Epitope tags are widely used in cell biology and biochemistry research. The S-peptide/S-protein interaction has previously been utilized to purify polypeptides expressed in bacteria. We have now re-engineered the S-peptide/S-protein system to allow isolation of S-peptide-tagged polypeptides and their binding partners from eukaryotic cells with S-protein-agarose.

View Article and Find Full Text PDF

Previous studies have suggested two possible roles for Rad9 in mammalian cells subjected to replication stress or DNA damage. One model suggests that a Rad9-containing clamp is loaded onto damaged DNA, where it participates in Chk1 activation and subsequent events that contribute to cell survival. The other model suggests that Rad9 translocates to mitochondria, where it triggers apoptosis by binding to and inhibiting Bcl-2 and Bcl-x(L).

View Article and Find Full Text PDF

RAD9 is an integral element of the PCNA-like HUS1-RAD1-RAD9 (9-1-1) complex that participates in genotoxin-induced CHK1 activation. We have identified a novel RAD9 paralog, dubbed RAD9B, in humans and mice. RAD9 and RAD9B share extensive amino acid homology throughout their entire sequences (36% identity, 48% similarity).

View Article and Find Full Text PDF

DNA damage and replication stress activate the Chk1 signaling pathway, which blocks S phase progression, stabilizes stalled replication forks, and participates in G2 arrest. In this study, we show that Chk1 interacts with Hsp90, a molecular chaperone that participates in the folding, assembly, maturation, and stabilization of specific proteins known as clients. Consistent with Chk1 being an Hsp90 client, we also found that Chk1 but not Chk2 is destabilized in cells treated with the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG).

View Article and Find Full Text PDF

Rad9, a key component of genotoxin-activated checkpoint signaling pathways, associates with Hus1 and Rad1 in a heterotrimeric complex (the 9-1-1 complex). Rad9 is inducibly and constitutively phosphorylated. However, the role of Rad9 phosphorylation is unknown.

View Article and Find Full Text PDF

Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA.

View Article and Find Full Text PDF