Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons.
View Article and Find Full Text PDFBackground And Purpose: Pore-forming α subunits of the voltage- and Ca -activated K channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells.
Experimental Approach: Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells.
Background: Despite aggressive treatment regimens comprising surgery and radiochemotherapy, glioblastoma (GBM) remains a cancer entity with very poor prognosis. The development of novel, combined modality approaches necessitates adequate preclinical model systems and therapy regimens that closely reflect the clinical situation. So far, image-guided, fractionated radiotherapy of orthotopic GBM models represents a major limitation in this regard.
View Article and Find Full Text PDFBackground: Radiotherapy (RT) is used to treat retinoblastoma (Rb), the most frequent ocular tumour in children. Besides eradicating the tumour, RT can cause severe side effects including secondary malignancies. This study aimed to define whether the radioprotector ortho-phospho-L-tyrosine (pTyr) prevents RT-induced side effects and affects local tumour control in a xenograft and a genetic orthotopic Rb mouse model.
View Article and Find Full Text PDFOncogenic signalling via Ca -activated K channels of intermediate conductance (SK4, also known as K 3.1 or IK) has been implicated in different cancer entities including breast cancer. Yet, the role of endogenous SK4 channels for tumorigenesis is unclear.
View Article and Find Full Text PDFK channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K channels. The upregulation of highly "oncogenic" K channels such as the Ca-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells.
View Article and Find Full Text PDFInfiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels.
View Article and Find Full Text PDFMol Cancer Res
September 2015
Unlabelled: Ca(2+)-activated K(+) channels, such as BK and IK channels, have been proposed to fulfill pivotal functions in neoplastic transformation, malignant progression, and brain infiltration of glioblastoma cells. Here, the ionizing radiation (IR) effect of IK K(+) channel targeting was tested in human glioblastoma cells. IK channels were inhibited pharmacologically by TRAM-34 or genetically by knockdown, cells were irradiated with 6 MV photons and IK channel activity, Ca(2+) signaling, cell cycling, residual double-strand breaks, and clonogenic survival were determined.
View Article and Find Full Text PDFNeoadjuvant, adjuvant or definitive fractionated radiation therapy are implemented in first line anti-cancer treatment regimens of many tumor entities. Ionizing radiation kills the tumor cells mainly by causing double strand breaks of their DNA through formation of intermediate radicals. Survival of the tumor cells depends on both, their capacity of oxidative defense and their efficacy of DNA repair.
View Article and Find Full Text PDFThe standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane.
View Article and Find Full Text PDF