The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD-2 and SOD-3.
View Article and Find Full Text PDFVolatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [1, 2]. Genetic studies in Caenorhabditis elegans [3, 4], Drosophila [3, 5], and mice [6-9] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity.
View Article and Find Full Text PDFThe mitochondrial genome of Physarum polycephalum encodes five tRNAs, four of which are edited by nucleotide insertion. Two of these tRNAs, tRNA(met1) and tRNA(met2), contain predicted mismatches at the beginning (proximal end) of the acceptor stem. In addition, the putative 5' end of tRNA(met2) overlaps the 3' end of a small, abundant, noncoding RNA, which we term ppoRNA.
View Article and Find Full Text PDFRNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites.
View Article and Find Full Text PDFWe examined the role of the positively charged lysine residues in apoAI by chemical modification. Lysine modification by reductive methylation did not alter apoAI's net charge, secondary or tertiary structure as observed by circular dichroism and trytophan fluorescence, respectively, or have much impact on lipid binding or ABCA1-dependent cholesterol acceptor activity. Acetylation of lysine residues lowered the isoelectric point of apoAI, altered its secondary and tertiary structure, and led to a 40% decrease in cholesterol acceptor activity, while maintaining 93% of its lipid binding activity.
View Article and Find Full Text PDF