Stress fractures occur as a result of repeated mechanical stress on bone and are commonly found in the load-bearing lower extremities. Macrophages are key players in the immune system and play an important role in bone remodeling and fracture healing. However, the role of macrophages in stress fractures has not been adequately addressed.
View Article and Find Full Text PDFThoracic insufficiency syndromes are a genetically and phenotypically heterogeneous group of disorders characterized by congenital abnormalities or progressive deformation of the chest wall and/or vertebrae that result in restrictive lung disease and compromised respiratory capacity. We performed whole exome sequencing on a cohort of 42 children with thoracic insufficiency to elucidate the underlying molecular etiologies of syndromic and non-syndromic thoracic insufficiency and predict extra-skeletal manifestations and disease progression. Molecular diagnosis was established in 24/42 probands (57%), with 18/24 (75%) probands having definitive diagnoses as defined by laboratory and clinical criteria and 6/24 (25%) probands having strong candidate genes.
View Article and Find Full Text PDFAtomic force microscopy-infrared spectroscopy (AFM-IR) and optical photothermal infrared spectroscopy (O-PTIR), which feature spectroscopic imaging spatial resolution down to ∼ 50 nm and ∼ 500 nm, respectively, were employed to characterize the nano- to microscale chemical compositional changes in bone. Since these changes are known to be age dependent, fluorescently labelled bone samples were employed. The average matrix/mineral ratio values decrease as the bone tissue matures as measured by both AFM-IR and O-PTIR, which agrees with previously published FTIR and Raman spectroscopy results.
View Article and Find Full Text PDFGeneral anesthesia in rabbits is associated with higher morbidity and mortality relative to other mammalian species commonly anesthetized. Unique challenges related to endotracheal intubation (ETI) in rabbits contribute to this risk. To improve the safety of ETI in rabbits, we developed two new ETI methods using a supraglottic airway device (v-gel) to facilitate ETI and compared them to traditional "blind" technique.
View Article and Find Full Text PDFJ Musculoskelet Neuronal Interact
December 2020
Objectives: Neuropeptide Y (NPY) is involved in the coordination of bone mass and adiposity. However, multiple NPY sources exist and their individual contribution to the skeleton and adiposity not known. The objectives of our study were to evaluate the effects of peripheral mesenchymal derived NPY to the skeleton and adiposity and to compare them to the global NPY model.
View Article and Find Full Text PDFFracture healing involves interactions of different cell types, driven by various growth factors, and signaling cascades. Periosteal mesenchymal progenitor cells give rise to the majority of osteoblasts and chondrocytes in a fracture callus. Notch signaling has emerged as an important regulator of skeletal cell proliferation and differentiation.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a genetic disorder most commonly caused by mutations associated with type I collagen, resulting in a defective collagen bone matrix. Current treatments for OI focus on pharmaceutical strategies to increase the amount of defective bone matrix, but do not address the underlying collagen defect. Introducing healthy donor stem cells that differentiate into osteoblasts producing normal collagen in OI patients has the potential to increase bone mass and correct the mutant collagen matrix.
View Article and Find Full Text PDFNeuropeptide Y (NPY) is involved in multiple processes such as behavior, energy and bone metabolism. Previous studies have relied on global NPY depletion to examine its effects on bone. However, this approach is unable to distinguish the central or local source of NPY influencing bone.
View Article and Find Full Text PDFA prolonged increase in proinflammatory cytokines is associated with osteoporotic and autoimmune bone loss and, conversely, anti-inflammatory pathways are associated with protection against bone loss. Milk fat globule-epidermal growth factor (MFG-E)-8 is a glycoprotein that is proresolving, regulates apoptotic cell clearance, and has been linked to autoimmune disease and skeletal homeostasis. The role of MFG-E8 in the young vs.
View Article and Find Full Text PDFMacrophages have established roles supporting bone formation. Despite their professional phagocytic nature, the role of macrophage phagocytosis in bone homeostasis is not well understood. Interestingly, apoptosis is a pivotal feature of cellular regulation and the primary fate of osteoblasts is apoptosis.
View Article and Find Full Text PDFSclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model.
View Article and Find Full Text PDFBone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI).
View Article and Find Full Text PDFMacrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial.
View Article and Find Full Text PDFBoth PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6(+/+) and IL-6(-/-) mice.
View Article and Find Full Text PDFProteoglycan-4 (Prg4) protects synovial joints from arthropathic changes by mechanisms that are incompletely understood. Parathyroid hormone (PTH), known for its anabolic actions in bone, increases Prg4 expression and has been reported to inhibit articular cartilage degeneration in arthropathic joints. To investigate the effect of Prg4 and PTH on articular cartilage, 16-week-old Prg4 mutant and wild-type mice were treated with intermittent PTH (1-34) or vehicle control daily for six weeks.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although antiresorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials show improved vertebral parameters but equivocal effects on long-bone fracture rates.
View Article and Find Full Text PDFHematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role in HSC mobilization although it is poorly defined.
View Article and Find Full Text PDFProteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH-responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions.
View Article and Find Full Text PDF