We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 kg robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2015
This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning.
View Article and Find Full Text PDFIn the quest for alternatives to traditional complementary metal-oxide-semiconductor, it is being suggested that digital computing efficiency and power can be improved by matching the precision to the application. Many applications do not need the high precision that is being used today. In particular, large gains in area and power efficiency could be achieved by dedicated analog realizations of approximate computing engines.
View Article and Find Full Text PDFDespite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a supervised classifier, the labeled data is collected during a calibration recording, in which the user is asked to perform a specific task. Based on the known labels of this recording, the BCI's classifier can learn to decode the individual's brain signals.
View Article and Find Full Text PDFTo better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ('tensile-integrity') structures have unique physical properties that make them ideal for interaction with uncertain environments.
View Article and Find Full Text PDFObjective: Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs).
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2014
Reservoir computing (RC) is a technique in machine learning inspired by neural systems. RC has been used successfully to solve complex problems such as signal classification and signal generation. These systems are mainly implemented in software, and thereby they are limited in speed and power efficiency.
View Article and Find Full Text PDFIn the field of neural network simulation techniques, the common conception is that spiking neural network simulators can be divided in two categories: time-step-based and event-driven methods. In this letter, we look at state-of-the art simulation techniques in both categories and show that a clear distinction between both methods is increasingly difficult to define. In an attempt to improve the weak points of each simulation method, ideas of the alternative method are, sometimes unknowingly, incorporated in the simulation engine.
View Article and Find Full Text PDFIn today's age, companies employ machine learning to extract information from large quantities of data. One of those techniques, reservoir computing (RC), is a decade old and has achieved state-of-the-art performance for processing sequential data. Dedicated hardware realizations of RC could enable speed gains and power savings.
View Article and Find Full Text PDFDynamical systems which generate periodic signals are of interest as models of biological central pattern generators and in a number of robotic applications. A basic functionality that is required in both biological modelling and robotics is frequency modulation. This leads to the question of whether there are generic mechanisms to control the frequency of neural oscillators.
View Article and Find Full Text PDFSeveral fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing.
View Article and Find Full Text PDFWalking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots.
View Article and Find Full Text PDFIn recent years, in an attempt to maximize performance, machine learning approaches for event-related potential (ERP) spelling have become more and more complex. In this paper, we have taken a step back as we wanted to improve the performance without building an overly complex model, that cannot be used by the community. Our research resulted in a unified probabilistic model for ERP spelling, which is based on only three assumptions and incorporates language information.
View Article and Find Full Text PDFThe interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found.
View Article and Find Full Text PDFTo emulate a spiking neuron, a photonic component needs to be excitable. In this paper, we theoretically simulate and experimentally demonstrate cascadable excitability near a self-pulsation regime in high-Q-factor silicon-on-insulator microrings. For the theoretical study we use Coupled Mode Theory.
View Article and Find Full Text PDFIn recent years, an increasing number of studies have investigated the effects of closed-loop anti-epileptic treatments. Most of the current research still is very labour intensive: real-time treatment is manually triggered and conclusions can only be drawn after multiple days of manual review and annotation of the electroencephalogram (EEG). In this paper we propose a technique based on reservoir computing (RC) to automatically and in real-time detect epileptic seizures in the intra-cranial EEG (iEEG) of epileptic rats in order to immediately trigger seizure treatment.
View Article and Find Full Text PDFMany dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition.
View Article and Find Full Text PDFThis work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods.
View Article and Find Full Text PDFIntroduction: In this paper we propose a technique based on reservoir computing (RC) to mark epileptic seizures on the intra-cranial electroencephalogram (EEG) of rats. RC is a recurrent neural networks training technique which has been shown to possess good generalization properties with limited training.
Materials: The system is evaluated on data containing two different seizure types: absence seizures from genetic absence epilepsy rats from Strasbourg (GAERS) and tonic-clonic seizures from kainate-induced temporal-lobe epilepsy rats.
This work proposes a hierarchical biologically-inspired architecture for learning sensor-based spatial representations of a robot environment in an unsupervised way. The first layer is comprised of a fixed randomly generated recurrent neural network, the reservoir, which projects the input into a high-dimensional, dynamic space. The second layer learns instantaneous slowly-varying signals from the reservoir states using Slow Feature Analysis (SFA), whereas the third layer learns a sparse coding on the SFA layer using Independent Component Analysis (ICA).
View Article and Find Full Text PDFEcho state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed.
View Article and Find Full Text PDFReservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation.
View Article and Find Full Text PDFRecently van Elburg and van Ooyen (2009) published a generalization of the event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory currents and double exponential inhibitory synaptic currents, introduced by Carnevale and Hines. In the paper, it was shown that the constraints on the synaptic time constants imposed by the Newton-Raphson iteration scheme, can be relaxed. In this note, we show that according to the results published in D'Haene, Schrauwen, Van Campenhout, and Stroobandt (2009), a further generalization is possible, eliminating any constraint on the time constants.
View Article and Find Full Text PDFReservoir computing (RC) systems are powerful models for online computations on input sequences. They consist of a memoryless readout neuron that is trained on top of a randomly connected recurrent neural network. RC systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits.
View Article and Find Full Text PDF