Publications by authors named "Benjamin Schon"

This work addresses the challenge of surface modification of porous, electrospun fiber mats containing an insoluble conducting polymer coating. Herein, a novel methodology of grafting a polymer brush onto conducting polymer fiber mats is developed that employs filtering of the polymerization solution through the fiber mat. An electrospun sulfonated polystyrene-poly(ethylene-ran-butylene)-polystyrene (sSEBS) fiber mat is first coated with a layer of conducting copolymer bearing an Atom Transfer Radical Polymerization (ATRP) initiating functionality (PEDOT-Br).

View Article and Find Full Text PDF

This review surveys and summarizes the materials and methods used to make liquid filtration membranes. Examples of each method including phase inversion, electrospinning, interfacial polymerization, thin film composites, stretching, lithography and templating techniques, are given and the pros and cons of each method are discussed. Trends of recent literature are also discussed and their potential direction is deliberated.

View Article and Find Full Text PDF

While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D-bioassembly platform is introduced to primarily study fusion of cartilage-cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs).

View Article and Find Full Text PDF

Cross-flow microfiltration, using a microporous membrane, is a well-established technique for wine clarification in oenology because of its cost-effectiveness and high-throughput. However, membrane fouling remains a significant issue for wine filtration in high-throughput systems. Herein, an approach for in situ real-time monitoring of fouling in filtration systems using a conductive filtration membrane and a model fluid for filtration is reported.

View Article and Find Full Text PDF

Oxygen inhibition is a phenomenon that directly impacts the print fidelity of 3D biofabricated and photopolymerized hydrogel constructs. It typically results in the undesirable physical collapse of fabricated constructs due to impaired cross-linking, and is an issue that generally remains unreported in the literature. In this study, we describe a systematic approach to minimizing oxygen inhibition in photopolymerized gelatin-methacryloyl (Gel-MA)-based hydrogel constructs, by comparing a new visible-light initiating system, Vis + ruthenium (Ru)/sodium persulfate (SPS) to more conventionally adopted ultraviolet (UV) + Irgacure 2959 system.

View Article and Find Full Text PDF

Objectives: To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT.

Methods: We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples.

View Article and Find Full Text PDF