Publications by authors named "Benjamin Schamme"

The effect of low molecular weight excipients on drug-excipient interactions, molecular mobility, and propensity to recrystallization of an amorphous active pharmaceutical ingredient is investigated. Two structurally related excipients (α-pentaacetylglucose and β-pentaacetylglucose), five different drug:excipient ratios (1:5, 1:2, 1:1, 2:1, and 5:1, w/w), and three different solid state characterization tools (differential scanning calorimetry, X-ray powder diffraction, and dielectric relaxation spectroscopy) were selected for the present research. Our investigation has shown that the excipient concentration and its molecular structure reveal quasi-identical molecular dynamic behavior of solid dispersions above and below the glass transition temperature.

View Article and Find Full Text PDF

Cinchonidine and Theophylline vitrification abilities have been investigated by differential and fast scanning calorimetry. These active pharmaceutical compounds are known in the literature to have a very high tendency to crystallize which has been confirmed by classical differential scanning calorimetry. Due to the growing interest in amorphous pharmaceutical compounds, their possible vitrifications have been investigated by fast scanning calorimetry.

View Article and Find Full Text PDF

New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported.

View Article and Find Full Text PDF

We study the physicochemical transformations of crystalline quinidine upon high-energy milling. The investigations have been achieved by classical, high performance, and fast scanning calorimetry combined with broadband dielectric spectroscopy and X-ray powder diffraction. As evolution of crystalline quinidine with time of milling revealed a prominent sub-T cold-crystallization phenomenon, independent and complementary analytical techniques were implemented.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the molecular dynamics of amorphous Quinidine above and below its glass-transition temperature (Tg) using dielectric relaxation spectroscopy and density functional theory.
  • Key findings include the characterization of molecular parameters such as the fragility index and activation energy related to different relaxation processes of Quinidine.
  • The research concludes that Quinidine's significant difference between Tg and crystallization onset temperature (Tc) helps prevent its recrystallization during extended storage, indicating promising life expectancy for this pharmaceutical in its amorphous state.
View Article and Find Full Text PDF

This study investigates for the first time the thermodynamic changes of Biclotymol upon high-energy milling at various levels of temperature above and below its glass transition temperature (Tg). Investigations have been carried out by temperature modulated differential scanning calorimetry (TM-DSC) and X-ray powder diffraction (XRPD). Results indicate that Biclotymol undergoes a solid-state amorphization upon milling at Tg-45 °C.

View Article and Find Full Text PDF

The present case study focuses on the crystallization kinetics and molecular mobility of an amorphous mouth and throat drug namely Biclotymol, through differential scanning calorimetry (DSC), temperature resolved X-ray powder diffraction (TR-XRPD) and hot stage microscopy (HSM). Kinetics of crystallization above the glass transition through isothermal and non-isothermal cold crystallization were considered. Avrami model was used for isothermal crystallization process.

View Article and Find Full Text PDF