Accumulation of damaged biomolecules in body tissues is the primary cause of aging and age-related chronic diseases. Since this damage often occurs spontaneously, it has traditionally been regarded as untreatable, with typical therapeutic strategies targeting genes or enzymes being ineffective in this domain. In this report, we demonstrate that an antibody targeting the isoDGR damage motif in lung tissue can guide immune clearance of harmful damaged proteins in vivo, effectively reducing age-linked lung inflammation.
View Article and Find Full Text PDFRibonucleoside modifications comprising the epitranscriptome are present in all organisms and all forms of RNA, including mRNA, rRNA and tRNA, the three major RNA components of the translational machinery. Of these, tRNA is the most heavily modified and the tRNA epitranscriptome has the greatest diversity of modifications. In addition to their roles in tRNA biogenesis, quality control, structure, cleavage, and codon recognition, tRNA modifications have been shown to regulate gene expression post-transcriptionally in prokaryotes and eukaryotes, including humans.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
The ribosome is one of the richest targets for antibiotics. Unfortunately, antibiotic resistance is an urgent issue in clinical practice. Several ATP-binding cassette family proteins confer resistance to ribosome-targeting antibiotics through a yet unknown mechanism.
View Article and Find Full Text PDFBackground: Brain degenerative protein modifications (DPMs) are associated with the apparition and progression of dementia, and at the same time, Alzheimer's disease with cerebrovascular disease (AD + CVD) is the most prevalent form of dementia in the elder population. Thus, understanding the role(s) of brain DPMs in this dementia subtype may provide novel insight on the disease pathogenesis and may aid on the development of novel diagnostic and therapeutic tools. Two essential DPMs known to promote inflammation in several human diseases are the ureido DPMs (uDPMs) arginine citrullination and lysine carbamylation, although they have distinct enzymatic and non-enzymatic origins, respectively.
View Article and Find Full Text PDFBackground: Dementia risk in women is higher than in men, but the molecular neuropathology of this gender difference remains poorly defined. In this study, we used unbiased, discovery-driven quantitative proteomics to assess the molecular basis of gender influences on risk of Alzheimer's disease with cerebrovascular disease (AD + CVD).
Results: We detected modulation of several redox proteins in the temporal lobe of AD + CVD subjects, and we observed sex-specific alterations in the white matter (WM) and mitochondria proteomes of female patients.