Publications by authors named "Benjamin Royall"

Spectral filtering of resonance fluorescence is widely employed to improve single photon purity and indistinguishability by removing unwanted backgrounds. For filter bandwidths approaching the emitter linewidth, complex behavior is predicted due to preferential transmission of components with differing photon statistics. We probe this regime using a Purcell-enhanced quantum dot in both weak and strong excitation limits, finding excellent agreement with an extended sensor theory model.

View Article and Find Full Text PDF

Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters.

View Article and Find Full Text PDF

On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime.

View Article and Find Full Text PDF

We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells.

View Article and Find Full Text PDF