Publications by authors named "Benjamin Riss-Yaw"

The development of innovative strategies enabling chemical reactions in living systems is of great interest for exploring and manipulating biological processes. Herein, we present a pioneering approach based on both bioorthogonal and confined chemistry for intracellular drug synthesis. Exploiting a click-to-release reaction, we engineered nanoparticles capable of synthesizing drugs within cellular environments through bioorthogonal reactions with cyclooctynes.

View Article and Find Full Text PDF

The journey of drug discovery (DD) has evolved from ancient practices to modern technology-driven approaches, with Artificial Intelligence (AI) emerging as a pivotal force in streamlining and accelerating the process. Despite the vital importance of DD, it faces challenges such as high costs and lengthy timelines. This review examines the historical progression and current market of DD alongside the development and integration of AI technologies.

View Article and Find Full Text PDF

The design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of and currently used to treat patients with this pathology.

View Article and Find Full Text PDF

We explored a bioorthogonal approach to release drugs from stimuli-responsive micelles inside tumor cells. The concept relies on sydnonimine-based micelles that undergo quantitative cleavage in presence of cyclooctynes, hence releasing their content within living cells. Four cleavable micelles were developed to allow massive burst release of Entinostat, a potent histone deacetylase inhibitor, following their internalization inside cancer cells.

View Article and Find Full Text PDF

Solvent-free and solvent-less slipping-on of the dibenzo-24-crown-8 (DB24C8) over the -hydroxysuccinimide end of an ammonium-containing thread has been studied and compared to the same reaction operated in solution. Slippage proved to be possible in solvent-free conditions, but the fastest slippage was obtained under heating when preliminary Liquid-Assisted Grinding (LAG) conditions were applied to the reactants followed by aging under an atmosphere of acetonitrile.

View Article and Find Full Text PDF

This work reports on the use of molecular translocators to capture a dibenzo-24-crown-8 (DB24C8) and then release it onto targeted molecular axles to afford, after removal of the translocator, [2]rotaxanes that do not hold any template site. Various translocators were studied and successfully aided the synthesis, with more or less efficacy, of [2]rotaxanes of different lengths. During the releasing step, the DB24C8 macrocycle shuttles along the thread, and the localization of the macrocycle might be driven by steric repulsion on the translocator part and/or electronic attraction of the targeted part of the axle to be encircled, which depends on both the nature of the translocator and the targeted thread to be encircled.

View Article and Find Full Text PDF

Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station.

View Article and Find Full Text PDF

The efficient synthesis and very easy isolation of dibenzo[24]crown-8-based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown-8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products.

View Article and Find Full Text PDF

The reverse anomeric effect (RAE) was investigated in different mannosyl [2]rotaxane molecular shuttle isomers that contain dibenzo-24-crown-8 (DB24C8) as the macrocycle, and anilinium and pyridinium amide as molecular stations. The switching on or off of the RAE was possible depending on both the pyridinium amide motif and the localization of the DB24C8 along the thread. The (1) C4 mannopyranosyl chair-like conformation was observed in all the non-interlocked molecules because the anomeric carbon of the mannose is linked to the positively charged nitrogen of the pyridinium unit.

View Article and Find Full Text PDF

The synthesis of a novel pH-sensitive hetero[4]rotaxane molecular machine through a self-sorting strategy is reported. The original tetra-interlocked molecular architecture combines a [c2]daisy chain scaffold linked to two [2]rotaxane units. Actuation of the system through pH variation is possible thanks to the specific interactions of the dibenzo-24-crown-8 (DB24C8) macrocycles for ammonium, anilinium, and triazolium molecular stations.

View Article and Find Full Text PDF