Cognitive abilities are hypothesized to affect survival and life span in nonhuman animals. However, most tests of this hypothesis have relied on interspecific comparisons of indirect measures of cognitive ability, such as brain size. We present direct evidence that individual variation in cognitive abilities is associated with differences in life span in a wild food caching bird.
View Article and Find Full Text PDFWild populations appear to synchronize their reproductive phenology based on numerous environmental and ecological factors; yet, there is still individual variation in the timing of reproduction within populations and such variation may be associated with fitness consequences. For example, many studies have documented a seasonal decline in reproductive fitness, but breeding timing may have varying consequences across different environments. Using 11 years of data, we investigated the relationship between relative breeding timing and reproductive success in resident mountain chickadees () across two elevational bands in the Sierra Nevada mountains, USA.
View Article and Find Full Text PDFSubstantial progress has been made in understanding the genetic architecture of phenotypes involved in a variety of evolutionary processes. Behavioral genetics remains, however, among the least understood. We explore the genetic architecture of spatial cognitive abilities in a wild passerine bird, the mountain chickadee (Poecile gambeli).
View Article and Find Full Text PDFWhile researchers have investigated mating decisions for decades, gaps remain in our understanding of how behaviour influences social mate choice. We compared spatial cognitive performance and food caching propensity within social pairs of mountain chickadees inhabiting differentially harsh winter climates to understand how these measures contribute to social mate choice. Chickadees rely on specialized spatial cognitive abilities to recover food stores and survive harsh winters, and females can discriminate among males with varying spatial cognition.
View Article and Find Full Text PDFThe use of abstract rules in behavioral decisions is considered evidence of executive functions associated with higher-level cognition. Laboratory studies across taxa have shown that animals may be capable of learning abstract concepts, such as the relationships between items, but often use simpler cognitive abilities to solve tasks. Little is known about whether or how animals learn and use abstract rules in natural environments.
View Article and Find Full Text PDFSocial animals may use alternative strategies when foraging, with producer-scrounger being one stable dichotomy of strategies. While 'producers' search and discover new food sources, 'scroungers' obtain food discovered by producers. Previous work suggests that differences in cognitive abilities may influence tendencies toward being either a producer or a scrounger, but scrounging behaviour in the context of specialized cognitive abilities is less understood.
View Article and Find Full Text PDFAnimals use climate-related environmental cues to fine-tune breeding timing and investment to match peak food availability. In birds, spring temperature is a commonly documented cue used to initiate breeding, but with global climate change, organisms are experiencing both directional changes in ambient temperatures and extreme year-to-year precipitation fluctuations. Montane environments exhibit complex climate patterns where temperatures and precipitation change along elevational gradients, and where exacerbated annual variation in precipitation has resulted in extreme swings between heavy snow and drought.
View Article and Find Full Text PDFLaboratory studies show that increased physiological burden during development results in cognitive impairment. In the wild, animals experience a wide range of developmental conditions, and it is critical to understand how variation in such conditions affects cognitive abilities later in life, especially in species that strongly depend on such abilities for survival. We tested whether variation in developmental condition is associated with differences in spatial cognitive abilities in wild food-caching mountain chickadees.
View Article and Find Full Text PDFSocial dominance has long been used as a model to investigate social stress. However, many studies using such comparisons have been performed in captive environments. These environments may produce unnaturally high antagonistic interactions, exaggerating the stress of social subordination and any associated adverse consequences.
View Article and Find Full Text PDFSpatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.
View Article and Find Full Text PDFSocial learning is a primary mechanism for information acquisition in social species. Despite many benefits, social learning may be disadvantageous when independent learning is more efficient. For example, searching independently may be more advantageous when food sources are ephemeral and unpredictable.
View Article and Find Full Text PDFSenescence, the gradual reduction and loss of function as organisms age, is a widespread process that is especially pronounced in cognitive abilities. Senescence appears to have a genetic basis and can be affected by evolutionary processes. If cognitive senescence is shaped by natural selection, it may be linked with selection on cognitive abilities needed for survival and reproduction, such that species where fitness is directly related to cognitive abilities should evolve delayed cognitive senescence likely resulting in higher lifetime fitness.
View Article and Find Full Text PDFThe greater male variability phenomenon predicts that males exhibit larger ranges of variation in cognitive performance compared with females; however, support for this pattern has come exclusively from studies of humans and lacks mechanistic explanation. Furthermore, the vast majority of the literature assessing sex differences in cognition is based on studies of humans and a few other mammals. In order to elucidate the underpinnings of cognitive variation and the potential for fitness consequences, we must investigate sex differences in cognition in non-mammalian systems as well.
View Article and Find Full Text PDFUnderstanding how differences in cognition evolve is one of the critical goals in cognitive ecology [1-5]. In food-caching species that rely on memory to recover caches, enhanced spatial cognition has been hypothesized to evolve via natural selection [2, 6-8], but there has been no direct evidence of natural selection acting on spatial memory. Food-caching mountain chickadees living at harsher, higher elevations, with greater reliance on cached food have better spatial learning abilities and larger hippocampi containing more and larger neurons compared to birds from milder, lower elevations [9, 10].
View Article and Find Full Text PDF