Publications by authors named "Benjamin R M Lake"

Correction for 'Polymeric hole-transport materials with side-chain redox-active groups for perovskite solar cells with good reproducibility' by Rosinda Fuentes Pineda et al., Phys. Chem.

View Article and Find Full Text PDF

Two monomers, M:OO and M:ON, and their corresponding polymers, P:OO and P:ON, were prepared from styrene derivatives N,N-diphenyl-4-vinyl-aniline with different substituents (-OCH3 and -N(CH3)2) in the N-phenyl para positions. The polymers were synthesised and fully characterised to study their function as hole transport materials (HTMs) in perovskite solar cells (PSCs). The thermal, optical and electrochemical properties and performance of these monomers and polymers as HTMs in PSCs were compared in terms of their structure.

View Article and Find Full Text PDF

A series of tridentate, ONO- and ONN-chelating β-ketiminate ligands were synthesised via condensation reactions, and complexed with iron(ii) using [Fe(N(SiMe))THF]. The complexation reactions proceeded in high yields to generate novel, monomeric, tetracoordinate iron(ii) complexes, each bearing a bis(trimethylsilyl)amide ligand, as confirmed by X-ray crystallography. These complexes were amenable to further reaction (protonolysis) with alcohols and phenols, generating alkoxide/phenolate-containing complexes that were dimeric in the solid state.

View Article and Find Full Text PDF

A family of electronically diverse pyridyl- and picolyl-substituted imidazolium salts have been prepared and coordinated to palladium in a single step, to deliver a variety of palladium(ii)-N-heterocyclic carbene (NHC) complexes. Neutral Pd(NHC)X2, cationic [Pd(NHC)2X]X and dicationic [Pd(NHC)2]X2-type complexes have been isolated and fully characterised, with single-crystal X-ray analysis revealing a variety of coordination environments around the palladium centres. The pre-formed complexes have been employed in a model Suzuki-Miyaura cross-coupling reaction to yield a sterically congested tetra-ortho-substituted biaryl product, showcasing turnover numbers comparable to Pd-PEPPSI-IPr catalyst.

View Article and Find Full Text PDF

A new library of silver(I)-N-heterocyclic carbene complexes prepared from the natural products caffeine, theophylline and theobromine is reported. The complexes have been fully characterised using a combination of NMR spectroscopy, mass spectrometry, elemental analysis and X-ray diffraction analysis. Furthermore, the hydrophobicity of the complexes has been measured.

View Article and Find Full Text PDF

The behavior of N-heterocyclic carbene (NHC) ligands in organometallic chemistry is hugely important for catalysis, due to the effect of these ligands on catalytic pathways and their involvement in catalyst decomposition. In this report, a combined experimental and computational study is presented, which provides mechanistic understanding of the unprecedented oxidative coupling of NHCs at Cu. The presence of Cu(I) -, Cu(II) -, and Cu(III) -NHC complexes during the process is postulated, with the unusual Ccarbene -Ccarbene oxidative coupling reaction occurring under extremely mild reaction conditions.

View Article and Find Full Text PDF

The preparation of a series of imidazolium salts bearing N-allyl substituents, and a range of substituents on the second nitrogen atom that have varying electronic and steric properties, is reported. The ligands have been coordinated to a copper(I) centre and the resulting copper(I)-NHC (NHC=N-heterocyclic carbene) complexes have been thoroughly examined, both in solution and in the solid-state. The solid-state structures are highly diverse and exhibit a range of unusual geometries and cuprophilic interactions.

View Article and Find Full Text PDF

An electrochemical approach for the preparation of copper(I) N-heterocyclic carbene complexes has been developed to include a diverse range of ligand precursors. Importantly, the method is effective for a ligand precursor that contains several acidic protons and for which traditional methods of carbene formation are not suitable.

View Article and Find Full Text PDF