The opportunistic human pathogen Pseudomonas aeruginosa PAO1 has an extensive metabolism, enabling it to utilize a wide range of structurally diverse compounds to meet its nutritional and energy needs. Interestingly, the utilization of some of the more unusual compounds often associated with a eukaryotic-host environment is regulated via enhancer-binding proteins (EBPs) in P. aeruginosa.
View Article and Find Full Text PDFBackground: Glutamate and aspartate are preferred nutrients for a variety of microorganisms. In the case for many Pseudomonas spp., utilization of these amino acids is believed to be dependent on a transporter complex comprised of a periplasmic-solute binding protein (AatJ), two permease domains (AatQM) and an ATP-binding component (AatP).
View Article and Find Full Text PDFProduction of medium chain-length poly(3-hydroxyalkanoates) [PHA] polymers with tightly defined compositions is an important area of research to expand the application and improve the properties of these promising biobased and biodegradable materials. PHA polymers with homopolymeric or defined compositions exhibit attractive material properties such as increased flexibility and elasticity relative to poly(3-hydroxybutyrate) [PHB]; however, these polymers are difficult to biosynthesize in native PHA-producing organisms, and there is a paucity of research toward developing high-density cultivation methods while retaining compositional control. In this study, we developed and optimized a fed-batch fermentation process in a stirred tank reactor, beginning with the biosynthesis of poly(3-hydroxydecanoate) [PHD] from decanoic acid by β-oxidation deficient recombinant LSBJ using glucose as a co-substrate solely for growth.
View Article and Find Full Text PDFMicrobiology (Reading)
September 2020
The C5-dicarboxylate α-ketoglutarate (α-KG) is a preferred nutrient source for the opportunistic pathogen . However, very little is known about how detects and responds to α-KG in the environment. Our laboratory has previously shown that the MifS/MifR two-component signal transduction system regulates α-KG assimilation in PAO1.
View Article and Find Full Text PDFDimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in PAO1.
View Article and Find Full Text PDFPseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised and cystic fibrosis patients. Treatment is difficult due to antibiotic resistance, and new antimicrobials are needed to treat infections. The alternative sigma factor 54 (σ, RpoN), regulates many virulence-associated genes.
View Article and Find Full Text PDFDimethylarginine dimethylaminohydrolases (DDAHs) catalyze the hydrolysis of methylarginines to yield l-citrulline and methylamines as products. DDAHs and their central roles in methylarginine metabolism have been characterized for eukaryotic cells. While DDAHs are known to exist in some bacteria, including and , the physiological importance and genetic regulation of bacterial DDAHs remain poorly understood.
View Article and Find Full Text PDFRecombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids.
View Article and Find Full Text PDFMany microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase.
View Article and Find Full Text PDFHalomonas sp. O-1 is a halophilic bacterium with a high potential for industrial application due to its natural ability to produce polyhydroxyalkanoates (PHAs) using seawater-based media. However, a major barrier preventing industrial scale implementation of this organism is a lack of molecular methodologies capable of readily transforming members of the Halomonas genus.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2016
Legionaminic acid, Leg5,7Ac2 , a nonulosonic acid like 5-acetamido neuraminic acid (Neu5Ac, sialic acid), is found in cell surface glycoconjugates of bacteria including the pathogens Campylobacter jejuni, Acinetobacter baumanii and Legionella pneumophila. The presence of Leg5,7Ac2 has been correlated with virulence in humans by mechanisms that likely involve subversion of the host's immune system or interactions with host cell surfaces due to its similarity to Neu5Ac. Investigation into its role in bacterial physiology and pathogenicity is limited as there are no effective sources of it.
View Article and Find Full Text PDFUnlabelled: Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory factors that govern the expression of the central ethanolamine catabolic pathway in Pseudomonas aeruginosa PAO1.
View Article and Find Full Text PDFGlycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1.
View Article and Find Full Text PDFThe alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli.
View Article and Find Full Text PDFA variety of soil-dwelling bacteria produce polyhydroxybutyrate (PHB), which serves as a source of energy and carbon under nutrient deprivation. Bacteria belonging to the genus Pseudomonas do not generally produce PHB but are capable of using the PHB degradation product (R)-3-hydroxybutyrate [(R)-3-HB] as a growth substrate. Essential to this utilization is the NAD+-dependent dehydrogenase BdhA that converts (R)-3-HB into acetoacetate, a molecule that readily enters central metabolism.
View Article and Find Full Text PDFEngineering of microorganisms to directly utilize plant biomass as a feedstock for the biosynthesis of value-added products such as bioplastics is the aim of consolidated bioprocessing. In previous research we successfully engineered E. coli LS5218 to produce polyhydroxyalkanoates (PHAs) from xylan.
View Article and Find Full Text PDFThere is a wealth of information on the genetic regulation and biochemical properties of bacterial C4-dicarboxylate transport systems. In sharp contrast, there are far fewer studies describing the transport and assimilation of C5-dicarboxylates among bacteria. In an effort to better our understanding on this subject, we identified the structural and regulatory genes necessary for the utilization of α-ketoglutarate (α-KG) in Pseudomonas aeruginosa PAO1.
View Article and Find Full Text PDFMany pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon.
View Article and Find Full Text PDFSialic acid is the terminal sugar found on most glycoproteins and is crucial in determining serum half-life and immunogenicity of glycoproteins. Sialic acid analogs are antiviral therapeutics as well as crucial tools in bacterial pathogenesis research, immunobiology and development of cancer diagnostic imaging. The scarce supply of sialic acid hinders production of these materials.
View Article and Find Full Text PDF