Publications by authors named "Benjamin Punshon-Smith"

Fast Photochemical Oxidation of proteins (FPOP) coupled with mass spectrometry (MS) has become an invaluable tool in structural proteomics to interrogate protein interactions, structure, and protein conformational dynamics as a function of solvent accessibility. In recent years, the scope of FPOP, a hydroxyl radical protein foot printing (HRPF) technique, has been expanded to protein labeling in live cell cultures, providing the means to study protein interactions in the convoluted cellular environment. In-cell protein modifications can provide insight into ligand induced structural changes or conformational changes accompanying protein complex formation, all within the cellular context.

View Article and Find Full Text PDF

Airborne spread of coronavirus disease 2019 (COVID-19) by infectious aerosol is all but certain. However, easily implemented approaches to assess the actual environmental threat are currently unavailable. We present a simple approach with the potential to rapidly provide information about the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the atmosphere at any location.

View Article and Find Full Text PDF

Protein therapeutics, also known as biologics, are currently manufactured at centralized facilities according to rigorous protocols. The manufacturing process takes months and the delivery of the biological products needs a cold chain. This makes it less responsive to rapid changes in demand.

View Article and Find Full Text PDF

Fast photochemical oxidation of proteins (FPOP) is a protein footprinting technique that is being increasingly used in MS-based proteomics. FPOP is utilized to study protein-protein interactions, protein-ligand interactions, and protein conformational dynamics. This method has recently been extended to protein labeling in live cells (IC-FPOP), allowing the study of protein conformations in the complex cellular environment.

View Article and Find Full Text PDF

Manufacturing technologies for biologics rely on large, centralized, good-manufacturing-practice (GMP) production facilities and on a cumbersome product-distribution network. Here, we report the development of an automated and portable medicines-on-demand device that enables consistent, small-scale GMP manufacturing of therapeutic-grade biologics on a timescale of hours. The device couples the in vitro translation of target proteins from ribosomal DNA, using extracts from reconstituted lyophilized Chinese hamster ovary cells, with the continuous purification of the proteins.

View Article and Find Full Text PDF