The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work with simulated communities and trait distributions shows sensitivity of functional diversity measures to the number and correlation of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis.
View Article and Find Full Text PDFPremise: Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes.
View Article and Find Full Text PDFWhile polyploids are common in nature, existing models suggest that polyploid establishment should be difficult and rare. We explore this apparent paradox by focussing on the role of unreduced gametes, as their union is the main route for the formation of neopolyploids. Production of such gametes is affected by genetic and environmental factors, resulting in variation in the formation rate of unreduced gametes (u).
View Article and Find Full Text PDF