Studies of radioactive isotopes at the liquid-solid or gas-solid interface are enabling a detailed mechanistic understanding of the effects of radioactive decay on physical, biological, and chemical systems. In recent years, there has been a burgeoning interest in using radioactive isotopes for both imaging and therapeutic purposes by attaching them to the surface of colloidal nanoparticles. By merging the field of nanomedicine with the more mature field of internal radiation therapy, researchers are discovering new ways to diagnose and treat cancer.
View Article and Find Full Text PDFChiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is more challenging. We demonstrate the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide.
View Article and Find Full Text PDFThis Article describes a density-based method for removing contaminants, including microorganisms and nonviable cells, from mammalian cell cultures using an aqueous two-phase system (ATPS). The properties of a 7% w/w polyethylene glycol (PEG)-11% w/w Ficoll ATPS can be tuned to prepare a biocompatible system that removes contaminants with little to no adverse effects on the viability or growth of the cultured cells after treatment. This system can be used to enrich cell culture populations for viable cells and to reduce the number of microorganism contaminants in a culture, which increases the chances of subsequent antibiotic treatments being successful.
View Article and Find Full Text PDF