Objectives: Thirty-six blood group systems are listed by the International Society of Blood Transfusion, containing almost 350 antigens. Most of these result from a single nucleotide polymorphism (SNP). Serology is the standard method for blood group typing.
View Article and Find Full Text PDFThirty-five blood group systems, containing >300 antigens, are listed by the International Society of Blood Transfusion. Most of these antigens result from a single nucleotide polymorphism. Blood group typing is conventionally performed by serology.
View Article and Find Full Text PDFThe present report describes the integration and application possibilities of a new microarray concept based on adhesive surface. The method was shown to enable the straightforward production of 384 and 1536-well plates modified with 100 and 25 spots per well, respectively. Such in-well densities were only possible thanks to the fabrication process which implies first the deposition of the microarray on a flat adhesive surface and then its assembly with bottomless 384 or 1536-well plates.
View Article and Find Full Text PDFThe present review reports on the lastest developments in multiplex immunoassays. The selected examples are classified through their detection strategy (fluorescence, chemiluminescence, colorimetry or labeless) and their assay format (standard microtiter plate, polymeric membranes and glass slides). Finally, the degree of integration in a complete system, incorporating fluid handling and detection was also taken into account.
View Article and Find Full Text PDFWe report here a comparison of support materials for colorimetric hybridization assays on microarrays. Four surfaces with various chemistries and architectures (roughness and porosity) were evaluated: (i) bare and (ii) activated polystyrene surfaces classically used for ELISA; (iii) a double-sided adhesive support; and (iv) a porous nitrocellulose/cellulose acetate membrane. Each substrate was functionalized with a microarray of probes and subjected to an enzymatic colorimetric DNA hybridization test.
View Article and Find Full Text PDFWe are reporting here a new technology for the straightforward production of integrated microarrays. The approach is based on the use of adhesive supports enabling (i) the immobilization of biomolecules as microarrays (up to 2500 spots per cm(2)) and (ii) the easy assembly of these microarrays with complex 3D structures such as 96-well bottomless microplates or polymer and glass microfluidic networks. The analytical performances of the system were demonstrated for sandwich protein detection (C-reactive protein) and hybridization assays, both in classical 96-well microplate format and microfluidic environment.
View Article and Find Full Text PDFA multistep procedure to prepare heterogeneous structured surfaces with contrasted chemical functionalities at the nanometer scale is presented. Aryldiazonium cations are used for the nanopatterning of electrodes to create hybrid surfaces. The nanopatterning procedure involves the auto-organization of a polystyrene (PS) beads layer at gold or glassy carbon electrode surfaces.
View Article and Find Full Text PDFA direct protein immobilization method for surface plasmon resonance imaging (SPRi) gold chip arraying is exposed. The biomolecule electroaddressing strategy, previously demonstrated by our team on carbon surfaces, is here valuably involved and adapted to create a straightforward and efficient protein immobilization process onto SPRi-biochips. The proteins, modified with an aryl-diazonium adduct, are addressed to the SPRi chip surface through the electroreduction of the aryl-diazonium.
View Article and Find Full Text PDFThe present article draws a general picture of non-conventional methods for biomolecules immobilization. The technologies presented are based either on original solid supports or on innovative immobilization processes. Polydimethylsiloxane elastomer will be presented as a popular immobilization support within the biochip developer community.
View Article and Find Full Text PDFAn original method for the enhancement of chemiluminescent (CL) on-chip detection of protein and oligonucleotides is presented. This enhancement is based on the electrodeposition of a gold nanostructured layer onto a screen-printed (SP) carbon microarray prior to the immobilization of biomolecules through a well-established diazonium adduct electrodeposition. Morphological studies of the Au layer (optical and atomic force microscopy) show that the metal film is composed of nanostructured 800 nm diameter particles covering the entire graphite surface and yielding a high surface area.
View Article and Find Full Text PDFAn original immobilisation technology is presented for the development of chemiluminescent protein biochips, suitable for measurement in complex matrices. The immobilisation strategy involved is based on diazotated aniline derivatives, which could be electro-addressed, thus creating a covalent linkage with a conducting material surface. The present electrochemical system is a cost effective and mass-produced carbon paste screen-printed (SP) microarray composed of eight 0.
View Article and Find Full Text PDFDiazonium cation electrodeposition was investigated for the direct and electro-addressed immobilization of proteins. For the first time, this reaction was triggered directly onto diazonium-modified proteins. Screen-printed (SP) graphite electrode microarrays were studied as active support for this immobilization.
View Article and Find Full Text PDF