The diastereoselective assembly of achiral constituents through a single spontaneous process into complex covalent architectures bearing multiple stereogenic elements still remains a challenge for synthetic chemists. Here, we show that such an extreme level of control can be achieved by implementing stereo-electronic information on synthetic organic building blocks and templates and that non-directional interactions (, electrostatic and steric interactions) can transfer this information to deliver, after self-assembly, high-molecular weight macrocyclic species carrying up to 16 stereogenic elements. Beyond the field of supramolecular chemistry, this proof of concept should stimulate the on-demand production of highly structured polyfunctional architectures.
View Article and Find Full Text PDFACS Chem Biol
December 2019
The heparin family, which includes unfractionated heparin, low-molecular heparin, and fondaparinux, is a class of drugs clinically used as intravenous blood thinners. To date, issues related to both the reversal of anticoagulation and the blood level determination of the anticoagulant at the point-of-care remain: while the only U.S.
View Article and Find Full Text PDFBy using a combination of experimental and computational experiments, we demonstrated that a second-generation dendrigraft of poly-l-lysine neutralizes the anticoagulant activity of unfractionated heparin, low-molecular-weight heparin, and fondaparinux more efficiently than protamine does in human plasma, making this synthetic polymer a promising surrogate of this problematic protein in clinical settings.
View Article and Find Full Text PDFBy using a combination of readily accessible experimental and computational experiments in water, we explored the factors governing the association between polyanionic dyn[4]arene and a series of α,ω-alkyldiammonium ions of increasing chain length. We found that the lock-and-key concept based on the best match between the apolar and polar regions of the molecular partners failed to explain the observed selectivities. Instead, the dissection of the energetic and structural contributions demonstrated that the binding events were actually guided by two crucial solvent-related phenomena as the chain length of the guest increases: the expected decrease of the enthalpic cost of guest desolvation and the unexpected increase of the favourable enthalpy of complex solvation.
View Article and Find Full Text PDFA general and scalable access to the aeruginosin family of marine natural products, exhibiting potent inhibitory activity against serine proteases, is reported. This was enabled by the strategic use of two recently implemented Pd-catalyzed C(sp(3))-H activation reactions. The first method allowed us to obtain the common 2-carboxy-6-hydroxyoctahydroindole (Choi) core of the target molecules on a large scale, whereas the second method provided a rapid and divergent access to various hydroxyphenyllactic (Hpla) subunits, including halogenated ones.
View Article and Find Full Text PDFThe electron density changes from reactants towards the transition state of a chemical reaction is expressed as a linear combination of the state-specific dual descriptors (SSDD) of the corresponding reactant complexes. Consequently, the SSDD can be expected to bear important resemblance to the so-called natural orbitals for chemical valence (NOCV), introduced as the orbitals that diagonalize the deformation density matrix of interacting molecules. This agreement is shown for three case studies: the complexation of a Lewis acid with a Lewis base, a SN2 nucleophilic substitution reaction and a Diels-Alder cycloaddition reaction.
View Article and Find Full Text PDF