Within the front end of the nuclear fuel cycle, many processes impart forensic signatures. Oxygen-stable isotopes (δO values) of uranium-bearing materials have been theorized to provide the processing and geolocational signatures of interdicted materials. However, this signature has been minimally utilized due to a limited understanding of how oxygen isotopes are influenced during uranium processing.
View Article and Find Full Text PDFChelonians (turtles, tortoises, and sea turtles) grow scute keratin in sequential layers over time. Once formed, scute keratin acts as an inert reservoir of environmental information. For chelonians inhabiting areas with legacy or modern nuclear activities, their scute has the potential to act as a time-stamped record of radionuclide contamination in the environment.
View Article and Find Full Text PDFThe THermally Evaporated Spray for Engineered Uniform particulateS (THESEUS) production platform was developed to generate highly uniform mixed actinide oxide particles. The particulate synthesis platform builds on previous efforts and utilizes an aerosol-based technology to generate, calcine, characterize, and aggregate a monodisperse oxide phase particle product. In this study, particles comprised of uranium oxide, incorporated with varying compositions of thorium, were produced.
View Article and Find Full Text PDFExamination of avian eggshell at the Old Town archaeological site in Southwestern New Mexico, United States of America, indicates that scarlet macaw () breeding occurred during the Classic Mimbres period (early AD 1100s). Current archaeological and archaeogenomic evidence from throughout the American Southwest/Mexican Northwest (SW/NW) suggests that Indigenous people bred scarlet macaws at an unknown location(s) between AD 900 and 1200 and likely again at the northwestern Mexico site of Paquimé post-AD 1275. However, there is a lack of direct evidence for breeding, or the location(s) of scarlet macaw breeding itself, within this area.
View Article and Find Full Text PDFA fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy.
View Article and Find Full Text PDFForensic laboratories routinely conduct analysis of glass fragments to determine whether or not there is an association between a fragment(s) recovered from a crime scene or from a suspect to a particular source of origin. The physical and optical (refractive index) properties of the fragments are compared and, if a "match" between two or more fragments is found, further elemental analysis can be performed to enhance the strength of the association. A range of spectroscopic techniques has been used for elemental analysis of this kind of evidence, including inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDF