KRAS is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with G12C mutation and advanced our understanding of its function. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors.
View Article and Find Full Text PDFThe list of potential gene fusions involving sarcomas, and particularly infantile fibrosarcoma-like tumors, continues to expand. The receptor tyrosine kinases are dysregulated in several tumor types, underscoring their roles in neoplasia. In this case presentation, we describe a pulmonary metastasis with two novel gene fusions (FKBP5::PRKCA and in-frame SEPT7::RAF1) occurring at least two decades after the primary tumor developed.
View Article and Find Full Text PDFDysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown.
View Article and Find Full Text PDFAlterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs.
View Article and Find Full Text PDFUnlabelled: The association between immune-related AEs (irAE) and outcome in patients with sarcoma is not known. We retrospectively reviewed a cohort of patients with advanced sarcoma treated with immune checkpoint blockade (ICB)-based therapy. Association of irAEs with survival was assessed using a Cox regression model that incorporated irAE occurrence as a time-dependent covariate.
View Article and Find Full Text PDFAlterations in the tumor suppressor are recurrently observed in several cancer types including sarcomas, which are mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that deficiency aberrantly activated mesenchymal differentiation programs.
View Article and Find Full Text PDFPurpose: Epacadostat, an indole 2,3 dioxygenase 1 (IDO1) inhibitor, proposed to shift the tumor microenvironment toward an immune-stimulated state, showed early promise in melanoma but has not been studied in sarcoma. This study combined epacadostat with pembrolizumab, which has modest activity in select sarcoma subtypes.
Patients And Methods: This phase II study enrolled patients with advanced sarcoma into five cohorts including (i) undifferentiated pleomorphic sarcoma (UPS)/myxofibrosarcoma, (ii) liposarcoma (LPS), (iii) leiomyosarcoma (LMS), (iv) vascular sarcoma, including angiosarcoma and epithelioid hemangioendothelioma (EHE), and (v) other subtypes.
SMARCB1 biallelic inactivation resulting in SMARCB1/INI1 deficiency drives a wide range of malignancies, including many mesenchymal tumors. However, the specific types of SMARCB1 alterations and spectrum of cooperating mutations among various types of sarcomas has not been well investigated. We profiled SMARCB1 genetic alterations by targeted DNA sequencing and fluorescence in situ hybridization (FISH) in a large cohort of 118 soft tissue and bone tumors, including SMARCB1-deficient sarcomas (78, 66%): epithelioid sarcomas, epithelioid peripheral nerve sheath tumors, poorly differentiated chordomas, malignant rhabdoid tumors, and soft tissue myoepithelial tumors, as well as non-SMARCB1-deficient sarcomas (40, 34%) with various SMARCB1 genetic alterations (mutations, copy number alterations).
View Article and Find Full Text PDFPD-1 blockade (nivolumab) efficacy remains modest for metastatic sarcoma. In this paper, we present an open-label, non-randomized, non-comparative pilot study of bempegaldesleukin, a CD122-preferential interleukin-2 pathway agonist, with nivolumab in refractory sarcoma at Memorial Sloan Kettering/MD Anderson Cancer Centers (NCT03282344). We report on the primary outcome of objective response rate (ORR) and secondary endpoints of toxicity, clinical benefit, progression-free survival, overall survival, and durations of response/treatment.
View Article and Find Full Text PDFThe genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the identification of therapeutic targets, clinical research, and advancing patient care. Because there are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few subtypes. Herein, we report a comparative genetic analysis of 2,138 sarcomas representing 45 pathological entities.
View Article and Find Full Text PDFBackground: Angiosarcoma is a histologically and molecularly heterogeneous vascular neoplasm with aggressive clinical behavior. Emerging data suggests that immune checkpoint blockade (ICB) is efficacious against some angiosarcomas, particularly cutaneous angiosarcoma of the head and neck (CHN).
Methods: Patients with histologically confirmed angiosarcoma treated with ICB-based therapy at a comprehensive cancer center were retrospectively identified.
Purpose: This phase Ib trial was designed to evaluate the safety and early efficacy signal of the combination of imatinib and binimetinib in patients with imatinib-resistant advanced gastrointestinal stromal tumors (GISTs).
Patients And Methods: This trial used a standard 3 + 3 design to determine the recommended phase II dose (RP2D). Additional patients were enrolled on an expansion cohort at the RP2D enriching for succinate dehydrogenase (SDH)-deficient GISTs to explore potential efficacy.
Purpose: Programmed cell death protein 1 (PD-1) blockade can mediate objective responses in advanced sarcomas, but their durability has not been established and it is unclear if hyperprogressive disease (HPD) occurs in sarcomas treated with PD-1 inhibitors.
Experimental Design: We pooled patients who were treated prospectively with nivolumab or pembrolizumab as monotherapy or with bempegaldesleukin, epacadostat, ipilimumab, or talimogene laherparepvec. We did a new independent assessment for HPD and analyzed clinical, pathologic, and genomic data from baseline tumor biopsies.
Purpose: Dedifferentiated liposarcoma (DDLS), one of the most common and aggressive sarcomas, infrequently responds to chemotherapy. DDLS survival and growth depend on underexpression of C/EBPα, a tumor suppressor and transcriptional regulator controlling adipogenesis. We sought to screen and prioritize candidate drugs that increase C/EBPα expression and may therefore serve as differentiation-based therapies for DDLS.
View Article and Find Full Text PDFWhole-genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations.
View Article and Find Full Text PDFPurpose: To detect alterations in DNA damage repair (DDR) genes, measure homologous recombination deficiency (HRD), and correlate these findings with clinical outcome in patients with leiomyosarcoma (LMS).
Patients And Methods: Patients with LMS treated at Memorial Sloan Kettering (MSK) Cancer Center who consented to prospective targeted next-generation sequencing with MSK-IMPACT were screened for oncogenic somatic variants in one of 33 DDR genes; where feasible, an experimental HRD score was calculated from IMPACT data. Progression-free survival (PFS) and overall survival (OS) were estimated after stratifying patients by DDR gene alteration status and HRD score.
Purpose: To determine if a targeted exome panel utilizing matched normal DNA can accurately detect germline and somatic HLA genes in patients with synovial sarcoma (SS) and whether select HLA-A*02 genotypes are prognostic or predictive of outcome in metastatic SS.
Experimental Design: Patients with metastatic SS consented to HLA typing by a Clinical Laboratory Improvement Amendments (CLIA)-certified test to determine eligibility for a clinical trial of NY-ESO-1-specific engineered T cells restricted to carriers of HLA-A*02:01, -A*02:05, or -A*02:06 (HLA-A*02 eligible). HLA genotype was determined from Memorial Sloan Kettering Integrated Molecular Profiling of Actionable Cancer Targets (MSK-IMPACT), where feasible, and somatic loss of heterozygosity (LOH) in HLA alleles was identified.
Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics.
View Article and Find Full Text PDFMutations in epigenetic pathways are common oncogenic drivers. Histones, the fundamental substrates for chromatin-modifying and remodelling enzymes, are mutated in tumours including gliomas, sarcomas, head and neck cancers, and carcinosarcomas. Classical 'oncohistone' mutations occur in the N-terminal tail of histone H3 and affect the function of polycomb repressor complexes 1 and 2 (PRC1 and PRC2).
View Article and Find Full Text PDFThe antifungal drug itraconazole was recently found to exhibit potent antiangiogenic activity and has since been repurposed as an investigational anticancer agent. Itraconazole has been shown to exert its antiangiogenic activity through inhibition of the mTOR signaling pathway, but the molecular mechanism of action was unknown. We recently identified the mitochondrial protein VDAC1 as a target of itraconazole and a mediator of its activation of AMPK, an upstream regulator of mTOR.
View Article and Find Full Text PDF