The antigens for acellular pertussis vaccines are made up of protein components that are purified directly from bacterial fermentation. As such, there are additional toxins that must be monitored as residuals during process optimization. This paper describes a liquid chromatography mass spectrometry (LC-MS) method for simultaneous analysis of residual protein toxins adenylate cyclase toxin (ACT) and dermonecrotic toxin (DNT), as well as a small molecule glycopeptide, tracheal cytotoxin (TCT) in a Pertussis toxin vaccine antigen.
View Article and Find Full Text PDFStreptococcus pneumoniae pneumolysin (PLY) is a virulence factor that causes toxic effects contributing to pneumococcal pneumonia. To date, deriving a PLY candidate vaccine with the appropriate detoxification and immune profile has been challenging. A pneumolysin protein that is appropriately detoxified and that retains its immunogenicity is a desirable vaccine candidate.
View Article and Find Full Text PDFWe investigated the immunogenicity, stability and adsorption properties of an experimental pneumococcal vaccine composed of three protein vaccine antigens; Pneumococcal histidine triad protein D, (PhtD), Pneumococcal choline-binding protein A (PcpA) and genetically detoxified pneumolysin D1 (PlyD1) formulated with aluminum salt adjuvants. Immunogenicity studies conducted in BALB/c mice showed that antibody responses to each antigen adjuvanted with aluminum hydroxide (AH) were significantly higher than when adjuvanted with aluminum phosphate (AP) or formulated without adjuvant. Lower microenvironment pH and decreased strength of antigen adsorption significantly improved the stability of antigens.
View Article and Find Full Text PDF