Publications by authors named "Benjamin Merlet"

The use of mass spectrometry-based metabolomics to study human, plant and microbial biochemistry and their interactions with the environment largely depends on the ability to annotate metabolite structures by matching mass spectral features of the measured metabolites to curated spectra of reference standards. While reference databases for metabolomics now provide information for hundreds of thousands of compounds, barely 5% of these known small molecules have experimental data from pure standards. Remarkably, it is still unknown how well existing mass spectral libraries cover the biochemical landscape of prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF

Metabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not sufficiently advanced computer skills since it requires the use of various tools and web servers.

View Article and Find Full Text PDF

Summary: MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyse omics data in a biochemical context.

Availability And Implementation: Documentation and link to GIT code repository (GPL 3.

View Article and Find Full Text PDF

This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database.

View Article and Find Full Text PDF
Article Synopsis
  • The metabolic network in a cell shows how small molecules change through chemical reactions, helped by enzymes and other factors.
  • Scientists are learning more about these networks and how they work in different cells and conditions.
  • The TrypanoCyc database helps study the metabolism of Trypanosoma brucei, a parasite that causes disease in humans and animals, and offers ways to visualize this complex information.
View Article and Find Full Text PDF