Selective control over crystallization in complex multicomponent systems such as hydrating cements is a key issue in modern material science. In this context, rational selection-based approaches appear highly promising in the quest for new additive chemistries. Here we have used phage display to identify peptide structures showing high affinity to adsorb on the surfaces of calcium sulfate hemihydrate (also referred to as bassanite), an important hydraulic binder employed in large scales by the construction industry.
View Article and Find Full Text PDFThe design of additives showing strong and selective interactions with certain target surfaces is key to crystallization control in applied reactive multicomponent systems. While suitable chemical motifs can be found through semi-empirical trial-and-error procedures, bioinspired selection techniques offer a more rationally driven approach and explore a much larger space of possible combinations in a single assay. Here, phage display screening is used to characterize the surfaces of crystalline gypsum, a mineral of broad relevance for construction applications.
View Article and Find Full Text PDF