Publications by authors named "Benjamin M Sleeter"

Natural climate solutions (NCS) are recognized as an important tool for governments to reduce greenhouse gas emissions and remove atmospheric carbon dioxide. Using California as a globally relevant reference, we evaluate the magnitude of biological climate mitigation potential from NCS starting in 2020 under four climate change scenarios. By mid-century NCS implementation leads to a large increase in net carbon stored, flipping the state from a net source to a net sink in two scenarios.

View Article and Find Full Text PDF

Background: Quantifying the carbon balance of forested ecosystems has been the subject of intense study involving the development of numerous methodological approaches. Forest inventories, processes-based biogeochemical models, and inversion methods have all been used to estimate the contribution of U.S.

View Article and Find Full Text PDF

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data.

View Article and Find Full Text PDF

Terrestrial ecosystems are an important sink for atmospheric carbon dioxide (CO ), sequestering ~30% of annual anthropogenic emissions and slowing the rise of atmospheric CO . However, the future direction and magnitude of the land sink is highly uncertain. We examined how historical and projected changes in climate, land use, and ecosystem disturbances affect the carbon balance of terrestrial ecosystems in California over the period 2001-2100.

View Article and Find Full Text PDF

With growing demand and highly variable inter-annual water supplies, California's water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062.

View Article and Find Full Text PDF

Background: Carbon storage potential has become an important consideration for land management and planning in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp National Wildlife Refuge.

View Article and Find Full Text PDF

Background: Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion.

View Article and Find Full Text PDF

The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment.

View Article and Find Full Text PDF

Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S.

View Article and Find Full Text PDF

We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973-2000.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnfn0t78kroj0tjiuf84ra3pk3phqqq41): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once