Purpose: Lung cancer screening programs generate a high volume of low-dose computed tomography (LDCT) reports that contain valuable information, typically in a free-text format. High-performance named-entity recognition (NER) models can extract relevant information from these reports automatically for inter-radiologist quality control.
Methods: Using LDCT report data from a longitudinal lung cancer screening program (8,305 reports; 3,124 participants; 2006-2019), we trained a rule-based model and two bidirectional long short-term memory (Bi-LSTM) NER neural network models to detect clinically relevant information from LDCT reports.
Calmodulin (CaM) is a Ca-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic 'anchor' residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca-binding motifs that form a Ca-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets.
View Article and Find Full Text PDFKRAS4b is a small guanosine triphosphatase (GTPase) protein that regulates several signal transduction pathways that underlie cell proliferation, differentiation, and survival. KRAS4b function requires prenylation of its C terminus and recruitment to the plasma membrane, where KRAS4b activates effector proteins including the RAF family of kinases. The Ca-sensing protein calmodulin (CaM) has been suggested to regulate the localization of KRAS4b through direct, Ca-dependent interaction, but how CaM and KRAS4b functionally interact is controversial.
View Article and Find Full Text PDFCalmodulin (CaM) is a ubiquitous calcium-sensing protein that has one of the most highly conserved sequences among eukaryotes. CaM has been a useful tool for biologists studying calcium signaling for decades. In recent years, CaM has also been implicated in numerous cancer-associated pathways, and rare CaM mutations have been identified as a cause of human cardiac arrhythmias.
View Article and Find Full Text PDFDeregulation of the RAS GTPase cycle due to mutations in the three RAS genes is commonly associated with cancer development. Protein tyrosine phosphatase SHP2 promotes RAF-to-MAPK signaling pathway and is an essential factor in RAS-driven oncogenesis. Despite the emergence of SHP2 inhibitors for the treatment of cancers harbouring mutant KRAS, the mechanism underlying SHP2 activation of KRAS signaling remains unclear.
View Article and Find Full Text PDF