Publications by authors named "Benjamin M Gramig"

Interconnected food, energy, water systems (FEWS) require systems level understanding to design efficient and effective management strategies and policies that address potentially competing challenges of production and environmental quality. Adoption of agricultural best management practices (BMPs) can reduce nonpoint source phosphorus (P) loads, but there are also opportunities to recover P from point sources, which could also reduce demand for mineral P fertilizer derived from declining geologic reserves. Here, we apply the Integrated Technology-Environment-Economics Model to investigate the consequences of watershed-scale portfolios of agricultural BMPs and environmental and biological technologies (EBTs) for co-benefits of FEWS in Corn Belt watersheds.

View Article and Find Full Text PDF

Conservation practices (CPs) are integral to maintaining the long-term viability of agro-ecological systems. Because farming systems and farmers' values and attitudes are heterogeneous, factors that consistently predict conservation behaviors remain elusive. Moreover, heterogeneity is present among studies regarding the type of CPs examined, and whether behavioral intentions or actual behaviors were measured.

View Article and Find Full Text PDF

Redirecting anthropogenic waste phosphorus (P) flows from receiving water bodies to high P demand agricultural fields requires a resource management approach that integrates biogeochemistry, agronomy, engineering, and economics. In the US Midwest, agricultural reuse of P recovered from spatially colocated waste streams stands to reduce point-source P discharges, meet agricultural P needs, and-depending on the speciation of recovered P-mitigate P losses from agriculture. However, the speciation of P recovered from waste streams via its chemical transformation-referred to here as recovered P (rP) differs markedly based on waste stream composition and recovery method, which can further interact with soil and crop characteristics of agricultural sinks.

View Article and Find Full Text PDF

There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential.

View Article and Find Full Text PDF

Despite major efforts, the reduction of reactive nitrogen (Nr) using traditional metrics and policy tools for the Chesapeake Bay has slowed in recent years. In this article, we apply the concept of the Nitrogen Cascade to the chemically dynamic nature and multiple sources of Nr to examine the temporal and spatial movement of different forms of Nr through multiple ecosystems and media. We also demonstrate the benefit of using more than the traditional mass fluxes to set criteria for action.

View Article and Find Full Text PDF