Publications by authors named "Benjamin Li-Ping Lee"

The replacement of small-diameter arteries remains an unmet clinical need. Here we investigated the cellular remodeling of fibrotic conduits as vascular grafts. The formation of fibrotic conduit around subcutaneously implanted mandrels involved not only fibroblasts but also the trans-differentiation of inflammatory cells such as macrophages into fibroblastic cells, as shown by genetic lineage tracing.

View Article and Find Full Text PDF

Unlabelled: Small-diameter synthetic vascular grafts have high failure rate due to primarily surface thrombogenicity, and effective surface chemical modification is critical to maintain the patency of the grafts. In this study, we engineered a small-diameter, elastic synthetic vascular graft with off-the-shelf availability and anti-thrombogenic activity. Polycarbonate-urethane (PCU), was electrospun to produce nanofibrous grafts that closely mimicked a native blood vessel in terms of structural and mechanical strength.

View Article and Find Full Text PDF

Tissue-specific stem cells can be coaxed or harvested for tissue regeneration. In this study, we identified and characterized a new type of stem cells from the synovial membrane of knee joint, named neural crest cell-like synovial stem cells (NCCL-SSCs). NCCL-SSCs showed the characteristics of neural crest stem cells: they expressed markers such as Sox10, Sox17 and S100β, were clonable, and could differentiate into neural lineages as well as mesenchymal lineages, although NCCL-SSCs were not derived from neural crest during the development.

View Article and Find Full Text PDF

Poly(l-lactide) (PLLA) microfibrous scaffolds produced by electrospinning were treated with mild Ar or Ar-NH3/H2 plasmas to enhance cell attachment, growth, and infiltration. Goniometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) measurements were used to evaluate the modification of the scaffold surface chemistry by plasma treatment. AFM and XPS measurements showed that both plasma treatments increased the hydrophilicity without affecting the integrity of the fibrous structure and the fiber roughness, whereas Ar-NH3/H2 plasma treatment also resulted in surface functionalization with amine groups.

View Article and Find Full Text PDF

Small-diameter synthetic vascular grafts have high failure rate and tissue-engineered blood vessels are limited by the scalability. Here we engineered bioactive materials for in situ vascular tissue engineering, which recruits two types of endogenous progenitor cells for the regeneration of blood vessels. Heparin was conjugated to microfibrous vascular grafts to suppress thrombogenic responses, and stromal cell-derived factor-1α (SDF-1α) was immobilized onto heparin to recruit endogenous progenitor cells.

View Article and Find Full Text PDF

Electrospun scaffolds are used extensively in tissue-engineering applications as they offer a cell-friendly microenvironment. However, one major limitation is the dense fibers, small pore size and consequently poor cell infiltration. Here, we employ a femtosecond (FS) laser system to ablate and create microscale features on electrospun poly(L-lactide) (PLLA) nanofibrous scaffolds.

View Article and Find Full Text PDF

Due to high incidence of vascular bypass procedures, an unmet need for suitable vessel replacements exists, especially for small-diameter vascular grafts. Here we produced 1-mm diameter vascular grafts with nanofibrous structure via electrospinning, and successfully modified the nanofibers by the conjugation of heparin using di-amino-poly(ethylene glycol) (PEG) as a linker. Antithrombogenic activity of these heparin-modified scaffolds was confirmed in vitro.

View Article and Find Full Text PDF