Purpose: Synchrotron microbeam radiation therapy (MRT), based on an inhomogeneous geometric and microscopic irradiation pattern of the tissues with high-dose and high-dose-rate x-rays, enhances the permeability of brain tumor vessels. This study attempted to determine the time and size range of the permeability window induced by MRT in the blood-brain (tumor) barrier.
Methods And Materials: Rats-bearing 9L gliomas were exposed to MRT, either unidirectional (tumor dose, 406 Gy) or bidirectional (crossfired) (2 × 203 Gy).
The prediction of the therapeutic intensity level (TIL) for severe traumatic brain injury (TBI) patients at the early phase of intensive care unit (ICU) remains challenging. Computed tomography images are still manually quantified and then underexploited. In this study, we develop an artificial intelligence-based tool to segment brain lesions on admission CT-scan and predict TIL within the first week in the ICU.
View Article and Find Full Text PDFIn this study, a radiomics analysis was conducted to provide insights into the differentiation of radionecrosis and tumor progression in multiparametric MRI in the context of a multicentric clinical trial. First, the sensitivity of radiomic features to the unwanted variability caused by different protocol settings was assessed for each modality. Then, the ability of image normalization and ComBat-based harmonization to reduce the scanner-related variability was evaluated.
View Article and Find Full Text PDFThe gold standard to diagnose intracerebral lesions after traumatic brain injury (TBI) is computed tomography (CT) scan, and due to its accessibility and improved quality of images, the global burden of CT scan for TBI patients is increasing. The recent developments of automated determination of traumatic brain lesions and medical-decision process using artificial intelligence (AI) represent opportunities to help clinicians in screening more patients, identifying the nature and volume of lesions and estimating the patient outcome. This short review will summarize what is ongoing with the use of AI and CT scan for patients with TBI.
View Article and Find Full Text PDFObjective: X-ray Phase Contrast Imaging (PCI) is an emerging modality that will be in the next few years available in a wider range of preclinical set-ups. In this study, we compare this imaging technique with conventional preclinical modalities in an osteoarthritis mouse model.
Method: Phase contrast technique was performed on 6 post-mortem, monoiodoacetate-induced osteoarthritis knees and 6 control knees.
IEEE Trans Med Imaging
July 2021
Standard parameter estimation from vascular magnetic resonance fingerprinting (MRF) data is based on matching the MRF signals to their best counterparts in a grid of coupled simulated signals and parameters, referred to as a dictionary. To reach a good accuracy, the matching requires an informative dictionary whose cost, in terms of design, storage and exploration, is rapidly prohibitive for even moderate numbers of parameters. In this work, we propose an alternative dictionary-based statistical learning (DB-SL) approach made of three steps: 1) a quasi-random sampling strategy to produce efficiently an informative dictionary, 2) an inverse statistical regression model to learn from the dictionary a correspondence between fingerprints and parameters, and 3) the use of this mapping to provide both parameter estimates and their confidence indices.
View Article and Find Full Text PDFThe physiological mechanism induced by the isocitrate dehydrogenase 1 (IDH1) mutation, associated with better treatment response in gliomas, remains unknown. The aim of this preclinical study was to characterize the IDH1 mutation through in vivo multiparametric MRI and MRS. Multiparametric MRI, including the measurement of blood flow, vascularity, oxygenation, permeability, and in vivo MRS, was performed on a 4.
View Article and Find Full Text PDFThis article presents an open source software able to convert, display, and process medical images. It differentiates itself from the existing software by its ability to design complex processing pipelines and to wisely execute them on a large databases. An MP3 pipeline can contain unlimited homemade or ready-made processes and can be carried out with a parallel execution system.
View Article and Find Full Text PDFRationale And Objectives: Glioblastoma image evaluation utilizes Magnetic Resonance Imaging contrast-enhanced, T1-weighted, and noncontrast T2-weighted fluid-attenuated inversion recovery (FLAIR) acquisitions. Disease progression assessment relies on changes in tumor diameter, which correlate poorly with survival. To improve treatment monitoring in glioblastoma, we investigated serial voxel-wise comparison of anatomically-aligned FLAIR signal as an early predictor of GBM progression.
View Article and Find Full Text PDFBackground: There has been growing interest in the use of hypertonic sodium lactate (HSL) solution following traumatic brain injury (TBI) in humans. However, little is known about the effects of HSL on functional deficits with respect to the hyperosmotic nature of HSL.
Methods: We have compared the effects of HSL solution and isotonic saline solution using sensorimotor and cognitive tests for 14 days post-trauma in animals.
The use of radiosensitizing nanoparticles with both imaging and therapeutic properties on the same nano-object is regarded as a major and promising approach to improve the effectiveness of radiotherapy. Here, we report the MRI findings of a phase 1 clinical trial with a single intravenous administration of Gd-based AGuIX nanoparticles, conducted in 15 patients with four types of brain metastases (melanoma, lung, colon, and breast). The nanoparticles were found to accumulate and to increase image contrast in all types of brain metastases with MRI enhancements equivalent to that of a clinically used contrast agent.
View Article and Find Full Text PDFThe functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation.
View Article and Find Full Text PDFWhen analyzing brain tumors, two tasks are intrinsically linked, spatial localization, and physiological characterization of the lesioned tissues. Automated data-driven solutions exist, based on image segmentation techniques or physiological parameters analysis, but for each task separately, the other being performedmanually or with user tuning operations. In this paper, the availability of quantitative magnetic resonance (MR) parameters is combined with advancedmultivariate statistical tools to design a fully automated method that jointly performs both localization and characterization.
View Article and Find Full Text PDFFor glioblastoma (GBM), current therapeutic approaches focus on the combination of several therapies, each of them individually approved for GBM or other tumor types. Many efforts are made to decipher the best sequence of treatments that would ultimately promote the most efficient tumor response. There is therefore a strong interest in developing new clinical in vivo imaging procedures that can rapidly detect treatment efficacy and allow individual modulation of the treatment.
View Article and Find Full Text PDFStroke is the leading cause of disability in adults. After the very narrow time frame during which treatment by thrombolysis and mechanical thrombectomy is possible, cell therapy has huge potential for enhancing stroke recovery. Accurate analysis of the response to new therapy using imaging biomarkers is needed to assess therapeutic efficacy.
View Article and Find Full Text PDFPurpose: To compare the blood-brain barrier permeability changes induced by synchrotron microbeam radiation therapy (MRT, which relies on spatial fractionation of the incident x-ray beam into parallel micron-wide beams) with changes induced by a spatially uniform synchrotron x-ray radiation therapy.
Methods And Materials: Male rats bearing malignant intracranial F98 gliomas were randomized into 3 groups: untreated, exposed to MRT (peak and valley dose: 241 and 10.5 Gy, respectively), or exposed to broad beam irradiation (BB) delivered at comparable doses (ie, equivalent to MRT valley dose); both applied by 2 arrays, intersecting orthogonally the tumor region.
Recent advances in MRI methodology, such as microvascular and brain oxygenation (StO) imaging, may prove useful in obtaining information about the severity of the acute stroke. We assessed the potential of StO to detect the ischaemic core in the acute phase compared to apparent diffusion coefficient and to predict the final necrosis. Sprague-Dawley rats (n = 38) were imaged during acute stroke (D0) and 21 days after (D21).
View Article and Find Full Text PDFDespite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated.
View Article and Find Full Text PDFQuantitative magnetic resonance imaging (MRI)-based biomarkers, which capture physiological and functional tumor processes, were evaluated as imaging surrogates of early tumor response following chemoradiotherapy in glioma patients. A multiparametric extension of a voxel-based analysis, referred as the parametric response map (PRM), was applied to quantitative MRI maps to test the predictive potential of this metric for detecting response. Fifty-six subjects with newly diagnosed high-grade gliomas treated with radiation and concurrent temozolomide were enrolled in a single-site prospective institutional review board-approved MRI study.
View Article and Find Full Text PDFThe aim of this study was to determine the ability of multiparametric MRI to identify the early effects of individual treatment, during combined chemo-radiotherapy on brain tumours. Eighty male rats bearing 9L gliosarcomas were randomized into four groups: untreated, anti-angiogenic therapy (SORA group), microbeam radiation therapy (MRT group) and both treatments (MRT+SORA group). Multiparametric MRI (tumour volume, diffusion-weighted MR imaging (ADC), blood volume fraction (BVf), microvessel index (VSI), vessel wall integrity (AUC(P846)) and tissue oxygen saturation (StO2)) was performed 1 day before and 2, 5 and 8 days after treatment initiation.
View Article and Find Full Text PDFObjectives: Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury.
Design: Experimental study.
Setting: Neurosciences and physiology laboratories.
Twenty years ago, theoretical developments were initiated to model the behavior of the NMR transverse relaxation rates in presence of vessels. These developments enabled the MRI-based mapping of mean vessel diameter, microvascular density, and vessel size index with comparable results to those obtained by a pathologist. The transfer of these techniques to routine clinical use has been hindered by the unavailability of the required sequences, namely fast gradient-echo spin-echo sequences.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2014
A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease. While positron emission tomography can map in vivo the oxygen level in blood, it has limited availability and requires ionizing radiation. Magnetic resonance imaging (MRI) offers an alternative through the blood oxygen level-dependent contrast.
View Article and Find Full Text PDFImaging heterogeneous cancer lesions is a real challenge. For diagnosis, histology often remains the reference, but it is widely acknowledged that biopsies are not reliable. There is thus a strong interest in establishing a link between clinical in vivo imaging and the biologic properties of tissues.
View Article and Find Full Text PDFImaging biomarkers capable of early quantification of tumor response to therapy would provide an opportunity to individualize patient care. Image registration of longitudinal scans provides a method of detecting treatment associated changes within heterogeneous tumors by monitoring alterations in the quantitative value of individual voxels over time, which is unattainable by traditional volumetric-based histogram methods. The concepts involved in the use of image registration for tracking and quantifying breast cancer treatment response using parametric response mapping (PRM), a voxel-based analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) scans, are presented.
View Article and Find Full Text PDF