Oscillatory activity is commonly observed during the maintenance of information in short-term memory, but its role remains unclear. Non-oscillatory models of short-term memory storage are able to encode stimulus identity through their spatial patterns of activity, but are typically limited to either an all-or-none representation of stimulus amplitude or exhibit a biologically implausible exact-tuning condition. Here we demonstrate a simple mechanism by which oscillatory input enables a circuit to generate persistent or sequential activity that encodes information not only in the spatial pattern of activity, but also in the amplitude of activity.
View Article and Find Full Text PDFFront Syst Neurosci
February 2022
Throughout the brain, parallel processing streams compose the building blocks of complex neural functions. One of the most salient models for studying the functional specialization of parallel visual streams in the primate brain is the lateral geniculate nucleus (LGN) of the dorsal thalamus, through which the parvocellular and magnocellular channels, On-center and Off-center channels, and ipsilateral and contralateral eye channels are maintained and provide the foundation for cortical processing. We examined three aspects of neural processing in these streams: (1) the relationship between extraclassical surround suppression, a widespread visual computation thought to represent a canonical neural computation, and the parallel channels of the LGN; (2) the magnitude of binocular interaction in the parallel streams; and (3) the magnitude of suppression elicited by perceptual competition (binocular rivalry) in each stream.
View Article and Find Full Text PDFConf Rec Asilomar Conf Signals Syst Comput
October 2018
In simplified models of neocortical circuits, inhibition is either modeled in a feedforward manner or through mutual inhibitory interactions that provide for competition between neuronal populations. By contrast, recent work has suggested a critical role for recurrent inhibition as a negative feedback element that stabilizes otherwise unstable recurrent excitation. Here, we show how models based upon a motif of recurrently connected "E-I" pairs of excitatory and inhibitory units can be used to describe experimental observations in sensory and memory networks.
View Article and Find Full Text PDFThis article was motivated by the conference entitled "Perception & Action - An Interdisciplinary Approach to Cognitive Systems Theory," which took place September 14-16, 2010 at the Santa Fe Institute, NM, USA. The goal of the conference was to bring together an interdisciplinary group of neuroscientists, roboticists, and theorists to discuss the extent and implications of action-perception integration in the brain. The motivation for the conference was the realization that it is a widespread approach in biological, theoretical, and computational neuroscience to investigate sensory and motor function of the brain in isolation from one another, while at the same time, it is generally appreciated that sensory and motor processing cannot be fully separated.
View Article and Find Full Text PDFRecent work from our laboratory and others has shown that certain stressors increase expression of the pro-inflammatory cytokine interleukin-1beta (IL-1) in the hypothalamus. The first goal of the following studies was to assess the impact of acute stress on other key inflammatory factors, including both cytokines and cell surface markers for immune-derived cells resident to the CNS in adult male Sprague Dawley rats exposed to intermittent footshock (80 shocks, 90 s variable ITI, 5 s each). While scattered changes in IL-6 and GFAP were observed in the hippocampus and cortex, we found the hypothalamus to be exquisitely sensitive to the effects of footshock.
View Article and Find Full Text PDF