The regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.
View Article and Find Full Text PDFAnimal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation.
View Article and Find Full Text PDFDuring eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy.
View Article and Find Full Text PDFEntry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry.
View Article and Find Full Text PDFAnimal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation.
View Article and Find Full Text PDFDuring cell division, chromosome segregation is orchestrated by a microtubule-based spindle. Interaction between spindle microtubules and kinetochores is central to the bi-orientation of chromosomes. Initially dynamic to allow spindle assembly and kinetochore attachments, which is essential for chromosome alignment, microtubules are eventually stabilized for efficient segregation of sister chromatids and homologous chromosomes during mitosis and meiosis I, respectively.
View Article and Find Full Text PDFCells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases.
View Article and Find Full Text PDFDuring cell division, the mitotic spindle, a macromolecular structure primarily comprised of microtubules, drives chromosome alignment and partitioning between daughter cells. Mitotic spindles can sense cellular dimensions in order to adapt their length and mass to cell size. This scaling capacity is particularly remarkable during early embryo cleavage when cells divide rapidly in the absence of cell growth, thus leading to a reduction of cell volume at each division.
View Article and Find Full Text PDFThe forces generated by microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on MT force exertion by motors anchored to a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2-4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk.
View Article and Find Full Text PDFCaenorhabditis elegans is a self-fertilizing hermaphroditic worm. A single C. elegans worm therefore produces both male and female gametes that fuse to generate embryos.
View Article and Find Full Text PDFSuccessive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus.
View Article and Find Full Text PDFIn most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative and functional assays in the oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network.
View Article and Find Full Text PDFMicrotubules (MTs) are cytoskeletal polymers that participate in diverse cellular functions, including cell division, intracellular trafficking, and templating of cilia and flagella. MTs undergo dynamic instability, alternating between growth and shortening via catastrophe and rescue events. The rates and frequencies of MT dynamic parameters appear to be characteristic for a given cell type.
View Article and Find Full Text PDFDuring cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization.
View Article and Find Full Text PDFA critical structure poised to coordinate chromosome segregation with division plane specification is the central spindle that forms between separating chromosomes after anaphase onset. The central spindle acts as a signalling centre that concentrates proteins essential for division plane specification and contractile ring constriction. However, the molecular mechanisms that control the initial stages of central spindle assembly remain elusive.
View Article and Find Full Text PDFThe physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood.
View Article and Find Full Text PDFMicrotubules (MTs) are cytoskeletal filaments essential for many processes in eukaryotic cells. Assembled of tubulin subunits, MTs are dynamic structures that undergo successive and stochastic phases of polymerization and depolymerization, a behavior called dynamic instability. Dynamic instability has been extensively studied in cultured cells and in vitro using cytoplasmic extracts or reconstituted MTs.
View Article and Find Full Text PDFMicrotubules (MTs) are cytoskeletal polymers that undergo dynamic instability, the stochastic transition between growth and shrinkage phases. MT dynamics are required for diverse cellular processes and, while intrinsic to tubulin, are highly regulated. However, little is known about how MT dynamics facilitate or are regulated by tissue biogenesis and differentiation.
View Article and Find Full Text PDFCytokinesis is the last step of cell division that physically separates the daughter cells. As such, it ensures the proper inheritance of both nuclear and cytoplasmic contents. Accomplishment of cytokinesis in eukaryotes is dictated by several key events: establishment of the division plane, furrow ingression through contraction of an actomyosin ring and abscission via membrane fusion.
View Article and Find Full Text PDFMicrotubules are cytoskeletal structures built of alpha- and beta-tubulins. Although tubulins are highly conserved throughout evolution, microtubules can be adapted to a range of different functions. A powerful mechanism that could regulate the functional specialization of microtubules is the posttranslational modification of tubulin molecules.
View Article and Find Full Text PDFPolyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family.
View Article and Find Full Text PDFPosttranslational glutamylation of tubulin is present on selected subsets of microtubules in cells. Although the modification is expected to contribute to the spatial and temporal organization of the cytoskeleton, hardly anything is known about its functional relevance. Here we demonstrate that glutamylation, and in particular the generation of long glutamate side chains, promotes the severing of microtubules.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2010
This paper presents the design and the fabrication of two low-loss X-band back-to-back tunable ferroelectric resonator filters on flexible liquid crystal polymer substrates using wire-bonded BST capacitors as analog tuning elements. The back-to-back topology consists of three resonators on both sides of the substrate coupled by apertures in their common ground plane, allowing the overall size of the filter to be reduced. BST varactors made on a sapphire substrate are easily diced and mounted on the polymer substrates to achieve the desired tuning.
View Article and Find Full Text PDFPolyglutamylation is a post-translational modification that generates lateral acidic side chains on proteins by sequential addition of glutamate amino acids. This modification was first discovered on tubulins, and it is important for several microtubule functions. Besides tubulins, only the nucleosome assembly proteins NAP1 and NAP2 have been shown to be polyglutamylated.
View Article and Find Full Text PDF