Publications by authors named "Benjamin L Unger"

Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium.

View Article and Find Full Text PDF

Background: Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring.

View Article and Find Full Text PDF

Unlabelled: Barrier dysfunction of airway epithelium may increase the risk for acquiring secondary infections or allergen sensitization. Both rhinovirus (RV) and polyinosinic-polycytidilic acid [poly(I·C)], a double-stranded RNA (dsRNA) mimetic, cause airway epithelial barrier dysfunction, which is reactive oxygen species (ROS) dependent, implying that dsRNA generated during RV replication is sufficient for disrupting barrier function. We also demonstrated that RV or poly(I·C)-stimulated NADPH oxidase 1 (NOX-1) partially accounts for RV-induced ROS generation.

View Article and Find Full Text PDF

Intestinal epithelial cells (IEC) play a role in mucosal inflammation by producing pro-inflammatory chemokines that may initiate or amplify local responses. IL-1 is a potent activator of IEC and its receptor localizes to focal adhesions. Since the Rho-associated kinase, ROCK, also localizes to focal adhesions, we examined the role of ROCK in IL-1-induced chemokine responses in IEC cell lines.

View Article and Find Full Text PDF

Background: Decreased activity of forkhead transcription factor class O (FoxO)3A, a negative regulator of NF-κB-mediated chemokine expression, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Previously, we showed that quercetin reduces lung inflammation in a murine model of COPD. Here, we examined the mechanisms underlying decreased FoxO3A activation and its modulation by quercetin in COPD human airway epithelial cells and in a COPD mouse model.

View Article and Find Full Text PDF

Bacterial infections following rhinovirus (RV), a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi). We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance.

View Article and Find Full Text PDF

A variety of cytokines have been detected in inflamed intestinal mucosal tissues, including the pro-inflammatory cytokine, interleukin-1 (IL-1), along with growth factors involved in wound healing processes such as proliferation and cell migration. However, little is known about how IL-1 and growth factors interact with intestinal epithelial cells to regulate the production of inflammatory cytokines such as interleukin-8 (IL-8). Previously, we have shown that hepatocyte growth factor (HGF) could significantly enhance IL-1-stimulated IL-8 secretion by the Caco-2 colonic epithelial cell line, yet HGF, by itself, did not stimulate IL-8 secretion.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) can induce proliferation and migration of intestinal epithelial cells and has also been shown to be important in wound healing of inflamed mucosal tissues. HGF is known to be expressed along with interleukin-1 (IL-1) by inflamed mucosal tissues, yet the effect of HGF on IL-1-induced proinflammatory cytokine responses by colonic epithelial cells is unknown. In this report, we have examined the effect of HGF on IL-1-induced secretion of IL-8 by the Caco-2 colonic epithelial cell line.

View Article and Find Full Text PDF