CRISPR/Cas9 has paved the way for the development of therapies that correct genetic mutations. However, constitutive expression of the Cas9 gene can increase off-target mutations and induce an immune response against the Cas9 protein. To limit the time during which the Cas9 nuclease is expressed, we proposed a simple drug inducible system.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD), a severe hereditary disease affecting 1 in 3,500 boys, mainly results from the deletion of exon(s), leading to a reading frameshift of the DMD gene that abrogates dystrophin protein synthesis. Pairs of sgRNAs for the Cas9 of Staphylococcus aureus were meticulously chosen to restore a normal reading frame and also produce a dystrophin protein with normally phased spectrin-like repeats (SLRs), which is not usually obtained by skipping or by deletion of complete exons. This can, however, be obtained in rare instances where the exon and intron borders of the beginning and the end of the complete deletion (patient deletion plus CRISPR-induced deletion) are at similar positions in the SLR.
View Article and Find Full Text PDF