Tuberculosis (TB) is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. The bacterial surface is a critical interface that shapes host-pathogen interactions. Several knowledge gaps persist in our understanding of (Mtb)-host interactions that may be addressed by an improved understanding of the Mtb surface proteome, including the identification of novel vaccine targets as well as developing new approaches to interrogate host-pathogen interactions.
View Article and Find Full Text PDFProteomic analyses of the phagosome has significantly improved our understanding of the proteins which contribute to critical phagosome functions such as apoptotic cell clearance and microbial killing. However, previous methods of isolating phagosomes for proteomic analysis have relied on cell fractionation with some intrinsic limitations. Here, we present an alternative and modular proximity-labeling based strategy for mass spectrometry proteomic analysis of the phagosome lumen, termed PhagoID.
View Article and Find Full Text PDFTuberculosis (TB), caused by (Mtb), is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. Studies have shown that Mtb uses a variety of mechanisms to evade host immunity. Secreted Mtb proteins such as Type VII secretion system substrates have been characterized for their ability to modulate anti-Mtb immunity; however, studies of other pathogens such as Typhi and have revealed that outer membrane proteins can also interact with the innate and adaptive immune system.
View Article and Find Full Text PDF